화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.51, No.5, 568-574, October, 2013
황화수소와 암모니아를 함유한 악취폐가스의 세미파일럿 규모 바이오필터 처리: 1. Thiobacillus sp. IW 및 반송슬러지를 고정한 담체를 충전한 바이오필터 운전
Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 1. Performance of Biofilter Packed with Media with Immobilized Thiobacillus sp. IW and Return-sludge
E-mail:
초록
퇴비공장 또는 공공시설에서 발생되는 악취폐가스의 대표적인 제거대상 오염원인 황화수소와 암모니아를 포함한 악취폐가스를 처리하기 위하여 여러 운전 조건 하에서의 Thiobacillus sp. IW 및 반송슬러지를 고정한 담체를 충전한 semi-pilot 바이오필터 시스템을 운전하였다. Semi-pilot 바이오필터 운전 초반 및 중반에서는 황화수소 제거효율은 암모니아 부하와 무관하였으나, 암모니아 제거효율은 황화수소 부하가 커짐에 따라서 감소하였다. 그럼에도 불구하고 semi-pilot 바이오필터 운전 후반에서는 황화수소 부하가 커짐에도 불구하고 암모니아 제거효율이 영향을 받지 않았다. 이것은 semi-pilot 바이오필터 운전 후반의 buffer solution의 지속적 투입으로 인하여 semi-pilot 바이오필터담체의 산성화가 크지 않음에 기인한다고 간주된다. Semi-pilot 바이오필터시스템으로 황화수소와 암모니아의 동시제거를 할 때에 황화수소와 암모니아의 최대 elimination capacity 값은 각각 약 58 및 30 g/m3/h이었다. 이와 같이 semi-pilot 바이오필터 운전에 의하여 황화수소와 암모니아를 동시 제거한 경우에는 실험실규모 바이오필터의 유사한 운전조건 하에서 둘 중의 하나만을 함유한 경우보다 제거용량이 각각 약 39와 46% 만큼 감소하여서, 황화수소와 암모니아를 동시 제거한 경우에 암모니아 최대제거용량이 황화수소 최대제거용량보다 7% 만큼 더 감소하였다.
A semi-pilot biofilter packed with media with immobilized Thiobacillus sp. IW and return sludge, was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). At the incipient and middle stages of a semi-pilot biofilter operation, the hydrogen sulfide-removal efficiency behaves regardless of an inlet-load of ammonia. However, the ammonia-removal efficiency decreased as an inlet-load of hydrogen sulfide increased. Nevertheless, at the final stage of the semi-pilot biofilter operation, the ammonia-removal efficiency was not affected by the increase of hydrogen sulfide-inlet load. It is attributed to that a serious acidification of semi-pilot biofilter-media did not occur due to continuous injection of buffer solution at the final stage of the semi-pilot biofilter operation. When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by semi-pilot biofilter, the maximum elimination capacities of hydrogen sulfide and ammonia turned out to be ca. 58 and 30 g/m3/h, respectively. These maximum elimination capacities were estimated to be ca. 39 and 46% less than those for lab-scaled biofilter-separate elimination of hydrogen sulfide and ammonia, respectively. Thus, for the simultaneous biofilter-treatment of hydrogen sulfide and ammonia, the maximum elimination capacity of ammonia decreased by 7% more than that of hydrogen sulfide.
  1. Hirai M, Ohtake M, Shoda M, J. Ferment. Bioeng., 70, 334 (1990)
  2. Easter C, Quigley C, Burrowes P, Witherspoon J, Apgar D, Chem. Eng. J., 113(2-3), 93 (2005)
  3. Islander RI, Devinny JS, Mansfield F, Postyn A, Shin H, J. Environ.Eng., 117, 751 (1990)
  4. Oyarzun P, Arancibia F, Canales C, Aroca GE, Process Biochem., 39(2), 165 (2003)
  5. Cho KS, Ryu HW, Lee NY, J. Biosci. Bioeng., 90(1), 25 (2000)
  6. Wani AH, Branion MR, Lau AK, J. Hazard. Mater., 60, 287 (1998)
  7. Chung YC, Huang CP, Tseng CP, Biotechnol. Prog., 12(6), 773 (1996)
  8. Chung YC, Huang C, Tseng CP, J. Biotechnol., 52, 31 (1996)
  9. Chung YC, Huang C, Tseng CP, Chemosphere., 43, 1043 (2001)
  10. Cox HHJ, Deshusses MA, Chem. Eng. J., 87(1), 101 (2002)
  11. Shareefdeen Z, Herner B, Webb D, Verhaeghe L, Wilson S, Chem. Eng. J., 113(2-3), 215 (2005)
  12. Hirai M, Kamamoto M, Yani M, Shoda M, J. Biosci. Bioeng., 91(4), 396 (2001)
  13. Elias A, Barona A, Arreguy A, Rios J, Aranguiz I, Penas J, Process Biochem., 37, 813 (2002)
  14. Lim KH, Park SW, Korean J. Chem. Eng., 23(6), 965 (2006)
  15. Lim DJ, Lim KH, Korean Chem. Eng. Res., 47(6), 788 (2009)
  16. Kaneko M, Gokan G, Katakura N, Takei Y, Hoshino M, Chem. Commun., 1625 (2005)
  17. Jester RC, Malone GW, “Respiratory Health on the Poultry Farm,” National Ag Safety Database (NASD), http://www.cdc.gov/nasd/docs/d000101-d000200/d000146/d000146.html.
  18. Lee EJ, Park SW, Nam DV, Chung CH, Lim KH, Korean Chem. Eng. Res., 48(3), 391 (2010)
  19. Lee EJ, Lim KH, Korean Chem. Eng. Res., 51(2), 272 (2013)
  20. Lee EJ, Lim KH, Korean Chem. Eng. Res., 48(3), 382 (2010)
  21. Chen YX, Yin J, Wang KX, Chemosphere., 58, 1023 (2005)
  22. Jiang X, Tay JH, J. Hazard. Mater., 176(1-3), 638 (2010)
  23. Chung YC, Lin YY, Tseng CP, Bioresour. Technol., 96(16), 1812 (2005)
  24. Galera MM, Cho E, Tuuguu E, Park SJ, Lee C, Chung WJ, J. Hazard. Mater., 152(2), 624 (2008)
  25. Lim KH, Jung YJ, Park LS, Min KS, HWAHAK KONGHAK, 39(5), 600 (2001)