화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.5, 930-936, October, 1995
N-Dodecanoyl,N-Methyl Glucamine (GL-12)과 음이온 계면활성제 혼합물의 상승효과에 관한 연구
Synergistic Effects of GL-12 and Anionic Surfactants Mixtures
초록
본 연구에서는 비이온성 계면활성제인 GL-12와 음이온성 계면활성제인 linear laurylbenzene sulfonate(LAS) 또는 sodium polyoxyethylene(3) glycol lauryl ether sulfate (SLES)의 혼합시 이들 흔합물의 상승 효과에 관하여 조사하였다. GL12/LAS 또는 GL-12/SLES 혼합계에서 각각의 혼합비를 변화시키면서 표면장력, cmc 저하능 및 기포력을 측정하였고 이 결과들로부터 혼합계에서 각각의 계면활성제가 표면 또는 미셀 내부에 존재하는 비율을 구하였으며 계면활성제 분자 사이의 상호작용을 나타내는 β-parameter를 구하여 상호작용의 종류 (attractive or repulsive)와 정도에 대하여 비교·분석하였다. GL-12와 LAS 또는 SLES의 혼합시, GL-12는 계면에 흘착하는 경향이 큰 반면 LAS 또는 SLES는 혼합 미셀을 형성하는 경향이 컸다. 기포력 실험에서는 계면에서 GL-12와 LAS 또는 SLES의 조성 비율이 3:1일 때 가장 우수하였으며 이러한 결과들을 계면에서 육각형(Hexagonal) 분자배열 모델을 이용하여 설명하였다.
Synergistic effects of GL-12/LAS and GL-12/SLES mixtures were studied by the measurements of surface tension, cmc and foaming ability of these systems at various mixing ratios. The composition of each surfactant at the air/water interface and in micelles was calculated based on the regular solution theory to find out the distribution of surfactants when they were mixed. The kinds and degree of interaction between the different surfactant molecules were explained through the β-parameter. In both GL-12/LAS and GL-12/SLES mixtures, GL-12 showed greater tendency for the adsorption at air/water interface and less tendency for the formation of mixed micelles in the solution compared to LAS or SLES. The foaming ability of solution was maximum when the molecular ratio of GL-12 to LAS or SLES at the air/water interface was 3 : 1. These results were explained based on the hexagonal packing model of surfactant molecules at the interface.
  1. Rosen MJ, "Surfactants and Interfacial Phenomena," (2nd ed.), Chapter 11, John Wiley & Sons, Inc., New York (1989)
  2. Kim TS, Ikeda I, J. Korean Oil Chem. Soc., 11, 55 (1994)
  3. Stalmans M, Matthijs E, Weeg E, Morris S, SOFW J., 119, 13 (1993)
  4. Harada S, Sahara H, Langmuir, 10(11), 4073 (1994) 
  5. Hoffmann H, Possnecker G, Langmuir, 10(2), 381 (1994) 
  6. Holland PM, "Mixed Surfactant Systems," AOCS Symposium Series, P.M. Holland and D.N. Rubingh ed., Chapter 2, American Chemical Society, Washington, D.C. (1992)
  7. Nishikido N, "Mixed SUrfactant Systems," K. Ogino and M. Abe ed., Surfactant Science Series; 46, Chapter 2, Marcel Dekker, Inc., New York (1993)
  8. Sugihara G, Hagi M, Tanaka M, J. Colloid Interface Sci., 123, 544 (1988) 
  9. Ross J, Miles GD, Am. Soc. for Testing Materials, Method D1173-53, Philadelphia, PA (1953)
  10. Adamson AW, "Physical Chemistry of Surface," 5th ed., Chapter 3, John Wiley & Sons, New York (1990)
  11. Rosen MJ, Huan XY, J. Colloid Interface Sci., 86, 164 (1982) 
  12. Holland PM, Rubingh DN, J. Phys. Chem., 87, 1984 (1983) 
  13. Rosen MJ, Hua XY, J. Am. Oil Chem. Soc., 59, 582 (1982)
  14. Rosen MJ, Zhao F, J. Colloid Interface Sci., 95, 443 (1983) 
  15. Shah DO, Dysleski CA, J. Am. Oil Chem. Soc., 46, 645 (1970)