Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.6, 1083-1091, December, 1995
포도당과 맥아당 농도 변화에 따른 Bacillus amyloliquefaciens 세포 성장과 a-Amylase 생합성에 관한 연구
Effects of Concentrations of Glucose and Maltose on the Production of α-Amylase and Growth of Bacillus amyloliquefaciens
초록
탄소원 농도변화에 의한 회분식 배양시 Bacillus amyloliquefaciens의 성장과 α-amylase 생합성에 대해 조사하였다. 탄소원인 maltose와 glucose는 배양 개시후 8시간 전후부터 12시간 전후에서 탄소원 분해가 거의 다 진행되었으며 세포성장도 최대가 되었다. 건조 최대세포 농도는 maltose 초기 농도가 10g/ℓ일 때 2.40g/ℓ에서 129.03unit/ml로서 탄소원 중 가장 높았다. 그리고 α-amylase 생성에 미친 탄소원 농도는 같은 탄소원에서 그 초기 농도가 높을 때 가장 높은 값의 효소가 생성되었다. 최대 비세포성장 속도는 maltose 초기농도가 10g/ℓ일 때 0.5g/g-hr로서 가장 높게 나타났으며 α-amylase의 최대 비생성속도는 maltose 초기농도 20g/ℓ일 때 26.20unit/mg-hr로 가장 높았으며 전체적으로는 maltose가 가장 높은 값을 나타내고 있다. 부산물의 생성은 lactic acid, acetic acid, ethanol, propionic acid 순이었다.
Cell growth and production of α-amylase and by-products were investigated by Bacillus amyloliquefaciens in batch culture with various carbon sources. All glucose and maltose were consumed as a carbon sources within about 8 to 12hours during cell culture. Maximum dry cell density was obtained with the highest value of 2.40g/ℓ at the initial maltose concentraction of 20g/ℓ. Among the various carbon sources, maximum α-amylase production was obtained with 129.03 uint/ml at the initial maltose concentraction of 10g/ℓ. With higher concentration of carbon sources, the highest activity of α-amylase was obtained. At the initial maltose concentration of 10g/ℓ, maximum specific growth rate, 0.5g/g-hr was observed. With initial maltose concentration of 20g/ℓ, maximum specific α-amylase production rate of 26.20 unit/mg-hr was obtained. As maltose or glucose was used as carbon source, lactic acid and acetic acid were major by-products, while propionic acid and methanol formation were not shown significantly.
- Yoo YH, Cadman TW, Hong J, Hatch RT, Biotechnol. Bioeng., 31, 426 (1988)
- Kindle KL, Appl. Biochem. Biotechnol., 8, 153 (1983)
- Saito N, Yamamoto K, J. Bacteriol., 121, 848 (1975)
- Welker NE, Campbell LL, J. Bacteriol., 86, 1202 (1963)
- Fukumoto J, Yamamoto T, Tsuru D, Nature, 180, 438 (1957)
- Welker NE, Campbell LL, J. Bacteriol., 86, 681 (1963)
- Coleman G, J. Gen. Microbiol., 49, 421 (1967)
- Coleman G, Grant MA, Nature, 211, 306 (1966)
- Coleman G, Elliot WH, Biochem. J., 83, 256 (1962)
- Schaeffer P, Bacteriol. Rev., 33, 48 (1969)
- Fukumoto J, Yamamoto T, Tsuru D, Ichikawa K, Proc. Intern. Symp. ENz. Chem., Tokyo and Kyoto, 2, 479 (1957)
- Fukumoto J, Yamamoto T, Tsuru D, Proc. Intern. Symp. Enz. Chem., Tokyo and Kyoto, 2, 366 (1957)
- Welker NE, Campbell LL, J. Bactriol., 86, 1202 (1963)
- Gray WD, J. Bacteriol., 24, 561 (1941)
- Sonneleitner B, Kappeli O, Biotechnol. Bioeng., 28, 927 (1986)
- Alexander MA, Jeffries TW, Enzyme Microb. Technol., 12, 2 (1990)
- Yoo YJ, Cadman TW, Hong J, Hatch RT, Biotechnol. Bioeng., 31, 357 (1988)
- Norman BE, Enzyme and Food Processing (Ed. G.G. Birch, N. Brakeborough & K.J. Parker), Applied Science Publishers, pp. 15 (1981)
- Yoo YJ, Hong J, Hatch RT, Biotechnol. Bioeng., 30, 147 (1987)
- Barker SB, Am. J. Physiol., 129, 305 (1940)
- Summerson WH, J. Biol. Chem., 130, 149 (1939)
- 윤무영, 서울대학교 대학원 화학공학과 석사학위논문 (1988)
- Cha WS, Kim CK, Kim JS, Korean J. Biotechnol. Bioeng., 8, 457 (1993)
- HollyWood NW, Doelle HW, Microbios, 17, 23 (1977)
- Irani MH, Maitra PK, J. Bacteriol., 132, 398 (1977)
- Sany J, Jeng JW, Ataai M, Can. J. Rev., 25, 56 (1971)
- Rutten R, Daugulis AJ, Biotechnol. Lett., 9, 505 (1987)
- Iljima S, Lin K, Kobayashi T, J. Ferment. Bioeng., 71, 69 (1991)
- Cha WS, Ph.D. Thesis, Dept. of Chem. Sejong Univ. Seoul (1993)
- Tsuchiya K, Shinjo A, Shinoyama K, Okasaki M, Mihara Y, J. Ferment. Technol., 45, 497 (1976)