화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.6, 1083-1091, December, 1995
포도당과 맥아당 농도 변화에 따른 Bacillus amyloliquefaciens 세포 성장과 a-Amylase 생합성에 관한 연구
Effects of Concentrations of Glucose and Maltose on the Production of α-Amylase and Growth of Bacillus amyloliquefaciens
초록
탄소원 농도변화에 의한 회분식 배양시 Bacillus amyloliquefaciens의 성장과 α-amylase 생합성에 대해 조사하였다. 탄소원인 maltose와 glucose는 배양 개시후 8시간 전후부터 12시간 전후에서 탄소원 분해가 거의 다 진행되었으며 세포성장도 최대가 되었다. 건조 최대세포 농도는 maltose 초기 농도가 10g/ℓ일 때 2.40g/ℓ에서 129.03unit/ml로서 탄소원 중 가장 높았다. 그리고 α-amylase 생성에 미친 탄소원 농도는 같은 탄소원에서 그 초기 농도가 높을 때 가장 높은 값의 효소가 생성되었다. 최대 비세포성장 속도는 maltose 초기농도가 10g/ℓ일 때 0.5g/g-hr로서 가장 높게 나타났으며 α-amylase의 최대 비생성속도는 maltose 초기농도 20g/ℓ일 때 26.20unit/mg-hr로 가장 높았으며 전체적으로는 maltose가 가장 높은 값을 나타내고 있다. 부산물의 생성은 lactic acid, acetic acid, ethanol, propionic acid 순이었다.
Cell growth and production of α-amylase and by-products were investigated by Bacillus amyloliquefaciens in batch culture with various carbon sources. All glucose and maltose were consumed as a carbon sources within about 8 to 12hours during cell culture. Maximum dry cell density was obtained with the highest value of 2.40g/ℓ at the initial maltose concentraction of 20g/ℓ. Among the various carbon sources, maximum α-amylase production was obtained with 129.03 uint/ml at the initial maltose concentraction of 10g/ℓ. With higher concentration of carbon sources, the highest activity of α-amylase was obtained. At the initial maltose concentration of 10g/ℓ, maximum specific growth rate, 0.5g/g-hr was observed. With initial maltose concentration of 20g/ℓ, maximum specific α-amylase production rate of 26.20 unit/mg-hr was obtained. As maltose or glucose was used as carbon source, lactic acid and acetic acid were major by-products, while propionic acid and methanol formation were not shown significantly.
  1. Yoo YH, Cadman TW, Hong J, Hatch RT, Biotechnol. Bioeng., 31, 426 (1988) 
  2. Kindle KL, Appl. Biochem. Biotechnol., 8, 153 (1983)
  3. Saito N, Yamamoto K, J. Bacteriol., 121, 848 (1975)
  4. Welker NE, Campbell LL, J. Bacteriol., 86, 1202 (1963)
  5. Fukumoto J, Yamamoto T, Tsuru D, Nature, 180, 438 (1957)
  6. Welker NE, Campbell LL, J. Bacteriol., 86, 681 (1963)
  7. Coleman G, J. Gen. Microbiol., 49, 421 (1967)
  8. Coleman G, Grant MA, Nature, 211, 306 (1966) 
  9. Coleman G, Elliot WH, Biochem. J., 83, 256 (1962)
  10. Schaeffer P, Bacteriol. Rev., 33, 48 (1969)
  11. Fukumoto J, Yamamoto T, Tsuru D, Ichikawa K, Proc. Intern. Symp. ENz. Chem., Tokyo and Kyoto, 2, 479 (1957)
  12. Fukumoto J, Yamamoto T, Tsuru D, Proc. Intern. Symp. Enz. Chem., Tokyo and Kyoto, 2, 366 (1957)
  13. Welker NE, Campbell LL, J. Bactriol., 86, 1202 (1963)
  14. Gray WD, J. Bacteriol., 24, 561 (1941)
  15. Sonneleitner B, Kappeli O, Biotechnol. Bioeng., 28, 927 (1986) 
  16. Alexander MA, Jeffries TW, Enzyme Microb. Technol., 12, 2 (1990) 
  17. Yoo YJ, Cadman TW, Hong J, Hatch RT, Biotechnol. Bioeng., 31, 357 (1988) 
  18. Norman BE, Enzyme and Food Processing (Ed. G.G. Birch, N. Brakeborough & K.J. Parker), Applied Science Publishers, pp. 15 (1981)
  19. Yoo YJ, Hong J, Hatch RT, Biotechnol. Bioeng., 30, 147 (1987) 
  20. Barker SB, Am. J. Physiol., 129, 305 (1940)
  21. Summerson WH, J. Biol. Chem., 130, 149 (1939)
  22. 윤무영, 서울대학교 대학원 화학공학과 석사학위논문 (1988)
  23. Cha WS, Kim CK, Kim JS, Korean J. Biotechnol. Bioeng., 8, 457 (1993)
  24. HollyWood NW, Doelle HW, Microbios, 17, 23 (1977)
  25. Irani MH, Maitra PK, J. Bacteriol., 132, 398 (1977)
  26. Sany J, Jeng JW, Ataai M, Can. J. Rev., 25, 56 (1971)
  27. Rutten R, Daugulis AJ, Biotechnol. Lett., 9, 505 (1987) 
  28. Iljima S, Lin K, Kobayashi T, J. Ferment. Bioeng., 71, 69 (1991) 
  29. Cha WS, Ph.D. Thesis, Dept. of Chem. Sejong Univ. Seoul (1993)
  30. Tsuchiya K, Shinjo A, Shinoyama K, Okasaki M, Mihara Y, J. Ferment. Technol., 45, 497 (1976)