Korean Journal of Chemical Engineering, Vol.31, No.5, 861-867, May, 2014
Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles
E-mail:
Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO2 nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO2 ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO2 concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO2 (5 g/L TiO2) by oxidative stress. The fatty acid methyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO2 (0.1 g/L) and a short induction time
(two days). The controlled condition of TiO2/UV-A inducing oxidative stress (0.1 g/L TiO2 and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO2/UV-A.
- Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS, Bioresour. Technol., 102(1), 71 (2011)
- Sander K, Murthy GS, Int. J. Life Cycle Ass., 15, 704 (2010)
- Chisti Y, Biotechnol. Adv., 25, 294 (2007)
- Chen M, Liu T, Chen X, Chen L, Zhang W, Wang J, Gao L, Chen Y, Peng X, Eur. J. Lipid Sci. Technol., 114, 205 (2012)
- Sharma KK, Schuhmann H, Schenk PM, Energies., 5, 1532 (2012)
- Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN, Russ J. Plant Physiol., 55, 455 (2008)
- Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T, Biotechnol. Bioeng., 109(8), 1947 (2012)
- Takagi M, Karseno, Yoshida T, J. Biosci. Bioeng., 101(3), 223 (2006)
- Li Z, Keasling JD, Niyogi KK, Plant Physiol., 158, 313 (2012)
- Solovchenko AE, Russ J. Plant Physiol., 59, 167 (2012)
- Aruoja V, Dubourguier HC, Kasemets K, Kahru A, Sci. Total Environ., 407, 1461 (2009)
- Zhukova LV, Kiwi J, Nikandrov VV, Colloids Surf. B Biointerfaces., 97, 240 (2012)
- Kim SC, Lee DK, Microchem. J., 80, 227 (2005)
- Chai YS, Lee JC, Kim BW, Korean J. Chem. Eng., 17(6), 633 (2000)
- Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS, PLoS ONE., 7, e30321 (2012)
- Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64 (2008)
- Ogino C, Dadjour MF, Iida Y, Shimizu N, J. Hazard. Mater., 153(1-2), 551 (2008)
- Harris EH, Chlamydomonas sourcebook: Introduction to chlamydomonas and its laboratory use, Academic Press, UK (2009)
- Ritchie RJ, Photosynth Res., 89, 27 (2006)
- Chae SR, Shin HS, Process Biochem., 42, 193 (2007)
- Yoo G, Park WK, Kim CW, Choi YE, Yang JW, Bioresour. Technol., 123, 717 (2012)
- Ryu BG, Kim J, Kim K, Choi YE, Han JI, Yang JW, Bioresour. Technol., 135, 357 (2013)
- Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A, Ecotoxicol. Environ. Saf., 74, 1180 (2011)
- Taloria D, Samanta S, Das S, Pututunda C, APCBEE Procedia., 2, 43 (2012)
- Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH, Biotechnol. Bioeng., 106(4), 638 (2010)
- Forjan E, Garbayo I, Henriques M, Rocha J, Mar. Biotechnol. (NY), 13, 366 (2011)
- Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A, Plant J., 54, 621 (2008)
- Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A, Free Radic Biol. Med., 51, 1872 (2011)
- Rodea-Palomares I, Boltes K, Fernandez-Pinas F, Leganes F, Garcia-Calvo E, Santiago J, Rosal R, Toxicol. Sci., 119, 135 (2011)
- Mortimer M, Kasemets K, Vodovnik M, Marinsek-Logar R, Kahru A, Environ. Sci. Technol., 45, 6617 (2011)
- Ledford HK, Niyogi KK, Plant Cell. Environ., 28, 1037 (2005)
- Ji J, Long ZF, Lin DH, Chem. Eng. J., 170(2-3), 525 (2011)