화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.5, 528-533, May, 2014
High-Speed Fabrication of Thermoplastic Carbon Fiber Fabric Composites with a Polymerizable, Low-Viscosity Cyclic Butylene Terephthalate Matrix for Automotive Applications
E-mail:,
A weight savings of approximately 30% of the total weight of an automobile can be achieved if highspeed mass production of the continuous carbon fabric reinforced composites (CCFRCs) is possible. In this study, we analyzed the high-speed production of thermoplastic CCFRCs with a 2 min processing time using a polymerizable, low-viscosity thermoplastic cyclic butylene terephthalate (CBT) resin. Along with the reduced processing time, superior mechanical properties were obtained in the CCFRC specimen, such as a tensile strength of 440 MPa and an impact strength of 44 KJ m-2. This could be achieved because a high carbon fiber content of 70% volume could be reached with few pores or defects in the CCFRC. The proposed high-speed production of the thermoplastic CCFRC can compete with metal pressing due to its short processing time of only a few minutes, which is the time limit currently accepted by the automotive industry.
  1. Kamiura M, Carbon Fiber Composite Materials, 3rd IT-2010 Strategy Seminar, Tokyo (2008)
  2. Kim SY, Baek SJ, Youn JR, Carbon, 49, 5329 (2011)
  3. Davis DC, Wilkerson JW, Zhu J, Hadjiev VG, Compos. Sci. Technol., 71, 1089 (2011)
  4. An Q, Rider AN, Thostenson ET, Carbon, 50, 4130 (2012)
  5. Li M, Wang SK, Gu YZ, Li YX, Potter K, Zhang ZG, Compos. Sci. Technol., 72, 873 (2012)
  6. Lee GW, Lee SS, Park M, Kim J, Lim S, Macromol. Res., 10(4), 194 (2002)
  7. Kim SY, Lee JT, Kim JY, Youn JR, Polym. Eng. Sci., 50(6), 1205 (2010)
  8. Kim SY, Lee SH, Baek SJ, Youn JR, Macromol. Mater. Eng., 293, 969 (2008)
  9. Kim YH, Kim DH, Kim JM, Kim SH, Kim WN, Lee HS, Macromol. Res., 17(2), 110 (2009)
  10. Cho S, Kim S, Cho M, Lee Y, Kim D, Kim W, Macromol. Res., 17(12), 1021 (2009)
  11. Meszaros L, Deak T, Balogh G, Czvikovszky T, Czigany T, Compos. Sci. Technol., 75, 22 (2013)
  12. Pillay S, Vaidya UK, Janowski GM, Compos. Sci. Technol., 69, 839 (2009)
  13. Fabbri P, Bassoli E, Bon SB, Valentini L, Polymer, 53(4), 897 (2012)
  14. Romhany G, Vigh J, Thomann R, Karger-Kocsis J, Sajo IE, Macromol. Mater. Eng., 296, 544 (2011)
  15. Xu D, Karger-Kocsis J, Apostolov AA, Eur. Polym. J., 45, 1270 (2009)
  16. Baets J, Dutoit M, Devaux J, Verpoest I, Compos. Part A: Appl. Sci. Manuf., 39, 13 (2008)
  17. Parton H, Baets J, Lipnik P, Goderis B, Devaux J, Verpoest I, Polymer, 46(23), 9871 (2005)
  18. Parton H, Verpoest I, Polym. Compos., 26, 60 (2005)
  19. Yu T, Wu CM, Chang CY, Wang CY, Rwei SP, Express Polym. Lett., 6, 318 (2012)
  20. Mohd Ishak ZA, Leong YW, Steeg M, Karger-Kocsis J, Compos. Sci. Technol., 67, 390 (2007)
  21. Karger-Kocsis J, Shang PP, Mohd Ishak ZA, Rosch M, Express Polym. Lett., 1, 60 (2007)
  22. Kim SY, Kim JY, Kim SH, Polym. Int., 57, 378 (2008)
  23. Harsch M, Karger-Kocsis J, Apostolov AA, J. Appl. Polym. Sci., 108(3), 1455 (2008)