화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.3, 1109-1118, May, 2014
A novel unified correlation model using ensemble support vector regression for prediction of flooding velocity in randomly packed towers
E-mail:
Traditional empirical correlations and models have found insufficient to predict the flooding velocity accurately mainly because there are many kinds of random packings which exhibit different characteristics. In this work, a novel data-driven modeling method, i.e. ensemble least squares support vector regression (ELSSVR), is proposed to construct a unified correlation for prediction of the flooding velocity for packed towers with random packings. The flooding data are first clustered into several classes by the fuzzy c-means clustering algorithm. Then, several single LSSVR models can be trained using each sub-class of samples to capture the special characteristics. Moreover, a weighted least squares approach is adopted to integrate these single LSSVR models. Consequently, the ELSSVR model can extract the feature information of flooding data effectively and improve the prediction performance. The proposed ELSSVR method is applied to construct a unified correlation for prediction of the flooding velocity in randomly packed towers. The obtained results for several kinds of random packings demonstrate that the ELSSVR-based correlation can obtain better prediction performance, compared with the traditional semi-empirical correlations and artificial neural networks-based models. Finally, a database containing the modeling information of flooding velocity in randomly packed towers of China is provided for academic research.
  1. Strigle RF, Packed Tower Design and Applications: Random and Structured Packings, Gulf Publishing Company, Houston, 1994.
  2. Billet R, Packed Column Analysis and Design, Ruhr-Universitat Bochum, Bochum, Germany, 1989.
  3. Cheremisinoff NP, Handbook of Chemical Processing Equipment, Butterworth-Heinemann, Woburn, MA, 2000.
  4. Mackowiak J, Fluid Dynamics of Packed Columns, Springer, New York, 2009.
  5. Pihlaja RK, Detecting incipient flooding in a distillation column, in: Proceedings of 2010 AIChE Spring National Meeting, Chicago, IL, USA, 2010.
  6. Cai TJ, Shariat A, Resetarits MR, Pressure drop measurements on distillation columns, in: Proceedings of 2009 AIChE Spring National Meeting, Tampa, FL, USA, 2009.
  7. Sherwood TK,Shipley GH, Holloway FAL, Ind. Eng. Chem. Res., 30, 765 (1938)
  8. Leva M, Chem. Eng. Process., 50-51, 59 (1954)
  9. Eckert JS, Chem. Eng. Prog., 57, 54 (1961)
  10. Kister H, Gill D, Chem. Eng. Process., 87, 32 (1991)
  11. Bain WA, Hougen OA, Trans. Ins. Chem. Eng., 40, 29 (1944)
  12. Billet R, Schultes M, Chem. Eng. Technol., 8, 371 (1995)
  13. Miyahara T, Ogawa K, Nagano Y, Hirade A, Takahashi T, Chem. Eng. Sci., 47, 3323 (1992)
  14. Mackowiak J, Chem. Eng. Technol., 13, 184 (1990)
  15. Piche S, Larachi F, Grandjean BPA, Ind. Eng. Chem. Res., 40(1), 476 (2001)
  16. Piche S, Iliuta I, Grandjean BPA, Larachi F, Chem. Eng. Sci., 56(21-22), 6003 (2001)
  17. Piche S, Larachi F, Grandjean BPA, Can. J. Chem., 79, 584 (2001)
  18. Piche S, Larachi F, Grandjean BPA, Chem. Eng. Res. Des., 79(1), 71 (2001)
  19. Piche S, Larachi F, Grandjean BPA, Chem. Eng. Sci., 24, 373 (2001)
  20. Liu GB, Yu KT, Yuan XG, Liu CJ, Int. J. Heat Mass Transf., 52, 5330 (2009)
  21. Brunazzi E, Macias-Salinas R, Viva A, Chem. Eng. Commun., 196(3), 330 (2009)
  22. Stemmet CP, Bartelds F, vander Schaaf J, Kuster BFM, Schouten JC, Chem. Eng. Res. Des., 88, 1094 (2008)
  23. Heymes F, Demoustier PM, Charbit F, Fanlo JL, Moulin P, Chem. Eng. Sci., 61(15), 5094 (2006)
  24. Lach IK, Can. J. Chem., 77, 439 (1999)
  25. Engel V, Stichlmair J, Geipel W, Chem. Eng. Technol., 24(5), 459 (2001)
  26. Yang J, Research on data-driven prediction model of flooding gas velocity and realtime flooding monitoring in packed column, Zhejiang University of Technology, Hangzhou, 2012 (Ph.D. Thesis).
  27. Himmelblau DM, Ind. Eng. Chem. Res., 47(16), 5782 (2008)
  28. Kadlec P, Gabrys B, Strandt S, Comput. Chem. Eng., 33(4), 795 (2009)
  29. Vapnik VN, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
  30. Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J, Least Squares Support Vector Machines, World Scientific, Singapore, 2002.
  31. Scholkopf B, Smola AJ, Learning with Kernels: Support VectorMachines, Regularization, Optimization, and Beyond., MIT Press, Cambridge, MA, 2002.
  32. Agrawal M, Jade AM, Jayaraman VK, Kulkarni BD, Chem. Eng. Prog., 98, 57 (2003)
  33. Kaveh NS, Mohammadi F, Ashrafizadeh SN, Chem. Eng. J., 147(2-3), 161 (2009)
  34. Liu Y, Hu NP, Wang HQ, Li P, Ind. Eng. Chem. Res., 48(12), 5731 (2009)
  35. Zhao BT, Chem. Eng. Sci., 64(19), 4131 (2009)
  36. Gandhi AB, Joshi JB, Chem. Eng. J., 160(1), 302 (2010)
  37. Eslamimanesh A, Gharagheizi F, Mohammadi AH, Richon D, J. Chem. Eng. Data, 56(10), 3775 (2011)
  38. Li CL, Liu Y, Yang J, Gao ZL, Prediction of flooding velocity in packed towers using least squares support vector machine, in: Proceedings of the 10th World Congress on Intelligent Control and Automation, Beijing, China, July, 2012, 3226.
  39. Zhou ZH, Wu JX, Tang W, Artif. Intelligence, 137, 239 (2002)
  40. Kim HC, Pang SN, Je HM, Kim DJ, Bang SY, Pattern Recognition, 36, 2757 (2003)
  41. Zhou LG, Lai KK, Yu L, Exp. Systems Applications, 37, 127 (2010)
  42. Sattlecker M, Baker R, Stone N, Bessant C, Chem. Intelligent Laboratory Systems, 107, 363 (2011)
  43. Chen T, Ren JH, Neurocomputing, 72, 1605 (2009)
  44. Miyamoto, Ichihashi H, Honda K, Algorithms for Fuzzy Clustering, Methods in c-Means Clustering with Applications, Springer, New York, 2008.
  45. Tsai DM, Lin CC, Pattern Recognition, 44, 1750 (2011)