화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.4, 418-424, August, 2014
NaCl/H3PO4 내염화 처리가 라이오셀 섬유의 열 안정 및 내산화 특성에 미치는 영향
Effects of NaCl/H3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties
E-mail:
초록
본 연구에서는 NaCl/H3PO4 혼합수용액을 사용하여 라이오셀 섬유의 내염화 처리를 수행하고 이에 따른 열 안정성과 내산화성의 향상 효과를 고찰하였다. 라이오셀 섬유를 다양한 공정조건으로 내염화 처리한 후 열 안정성과 내산화성을 측정 및 분석하고 그에 따른 메커니즘을 제시하였다. 실험결과, 내염화 처리된 라이오셀 섬유의 적분 열분해 온도 (integral procedural decomposition temperature, IPDT)와 한계산소지수(limited oxygen index, LOI)는 약 23, 30% 증가하였으며, 활성화 에너지(activation energy, Ea) 값은 약 24% 향상된 것을 알 수 있었다. 이러한 결과는 H3PO4와 NaCl가 연소시 에스테르화 반응, 탈수소화 반응 및 C-C결합의 분해반응으로 char 형성을 촉진하고 섬유 표면에 형성된 탄소 층을 형성함으로써, 고분자 수지 내부로 산소와 열 공급을 물리적으로 차단하여 열 안정성과 내산화성이 향상된 것으로 판단된다. 이러한 결과를 바탕으로, NaCl/H3PO4 혼합수용액을 이용한 내염화 처리 공정의 최적화된 인자 및 메커니즘을 제시하였고 열 안정성과 내산화성이 향상된 라이오셀을 성공적으로 제조하였다.
The improved thermal stability and anti-oxidation properties of Lyocell fiber were studied based on flame retardant treatment by using NaCl/H3PO4 solution. The optimized conditions of flame retardant treatment were studied on various maxing ratio of NaCl and H3PO4 and the mechanism was proposed through experimental results of thermal stability anti-oxidation. The IPDT (integral procedural decomposition temperature), LOI (limited oxygen index) and Ea (activation energy) increased 23, 30 and 24% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of Lyocell fiber were provided using NaCl/ H3PO4 solution and the mechanism was also studied based on experimental results such as IDT (initial decomposition temperature), IPDT, LOI and Ea.
  1. Donnet JB, Bansal RC, Carbon Fibers, 3rd ed., 12-27, Marcel Dekker, NY, USA (1984)
  2. Huang X, Materials, 2, 2369 (2009)
  3. Cato AD, Edie DD, Carbon, 41, 1411 (2003)
  4. Bahl OP, Manocha LM, Carbon, 12, 417 (1974)
  5. Johnson DJ, Tyson CN, J. Phys. D, 2, 787 (1969)
  6. Donnet JB, Rebouillat S, Wang TK, Peng JCM, Carbon Fibers., 3rd ed., 1-85, Marcel Dekker, NY, USA (1998)
  7. Peebles LH, Carbon Fibers: Formation, Structure, and Properties, 1st ed., 3, CRC Press, FL, USA (1995)
  8. Woodings CR, Int. J. Biol. Macromol., 17, 305 (1995)
  9. Lee JY, Fabrication and Properties of Novel Lyocell/Poly (lactic acid) and Lyocell/Poly (butylene suc-cinate) Biocomposite and Lyocell-Based Carbon Fabric/Phenolic Composites, M.S Dissertation, Kumoh National Institute of Technology, Gumi, Korea (2009)
  10. Cho C, Cho D, Park JK, Lee JY, Appl. J. Adhes. Interface, 14, 21 (2013)
  11. Lee YS, Kim YH, Appl. Chem. Eng., 11, 910 (2000)
  12. Park SJ, Jin FL, Lee JR, Mater. Sci. Eng. A, 374, 109 (2004)
  13. Park SJ, Lee HY, Han M, Hong SK, J. Colloid Interface Sci., 270(2), 288 (2004)
  14. Liodakis S, Kakardakis T, Tzortzakou S, Tsapara V, Thermochim. Acta, 477(1-2), 16 (2008)
  15. Sekiguchi Y, Frye JS, Shafizadeh F, J. Appl. Polym. Sci., 28, 3513 (1983)
  16. Kim BG, Sohng JK, Liou KK, Lee HC, Appl. Chem. Eng., 16, 257 (2005)
  17. Hills WE, Wood and biomass ultrastructure. In: Overend RP, Miline TA, Mudge LK(eds.). Fundamentals of Thermochemical Biomass Conversion, 1-33, Elsevier, London, UK (1985)
  18. Antal MJ, Biomass Pyrolysis : a Review of the literature. Part Ⅰ Carbohydrate pyrolysis. In: Boer KW, Duffie JA (eds.). Advances in Solar Energy, 61-111, American solar energy society, Boulder, USA (1983)
  19. Wu Q, Pan N, Deng K, Pan D, Carbohydr. Polym., 72, 222 (2008)
  20. Kim CB, Seo WJ, Kwon OD, Kim SB, Appl. Chem. Eng., 22(5), 540 (2011)
  21. Cho D, Kang HS, Park HC, Ha HS, Yoon BI, Kim KS, Polym.(Korea), 20(4), 650 (1996)
  22. Doyle CD, Anal. Chem., 33, 77 (1961)
  23. Van Krevelen DW, Polymer, 16, 615 (1975)