화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.8, No.2, 179-190, April, 1997
산화성 및 환원성분위기에서 석탄회분의 응용성
Studies of the Fusibility of Coal Ashes in Oxidizing and Reducing Conditions
초록
준역청탄, 유연탄, 무연탄 및 국내 무연탄을 포함하는 54종의 석탄회분을 대상으로 화학조성 및 광물분석 그리고 용융온도를 측정하여 화학조성이 용융온도에 미치는 영향을 고찰하였다. 석탄회의 구성 산화물중 CaO와 MgO, 그리고 Fe2O3가 용융온도를 낮추는 산화물임을 알 수 있었다. Fe2O3에 의한 용융온도 감소 효과는 환원성분위기에서 증가되었다. 산-염기도에서 염기성분의 함량이 증가할수록 용융온도는 감소하였다. 그러나 산-염기도와 용융온도와의 상관관계는 Fe2O3/CaO비가 증가함에 따라 낮아졌다. 산화성분위기보다는 환원성분위기에서 용융온도가 낮았으며 이때 분위기 변화에 따른 용융온도차는 Fe2O3의 함량보다는 SiO2/Al2O3비와 밀접한 상관성을 보여주었다. 석탄회의 용융온도(연화)를 예측하기 위한 다중회귀분석결과 산화성분위기에서는 Base/Acid, Fe2O3/CaO, SiO2/A12O3, (SiO2/A12O3)·(Base/Acid) 그리고 환원성분위기에서는 Base/Acid, Fe2O3/CaO, SiO2, TiO2등을 독립변수로 사용함으로써 비교적 상관성이 높은 관계식을 얻을 수 있었다.
To study the effects of chemical composition on the fusion temperatures of coal ashes, the chemical composition, mineral matter, and fusion temperature were studied with 54 kinds of coal ash samples including Korean anthracite coals. CaO, MgO and Fe2O3 were observed to be major fluxing elements in reducing and oxidizing atmosphere. The fluxing effect of Fe2O3 was increased more in reducing atmosphere. In a base/acid ratio, the fusion temperature decreased with increasing amounts of basic components. Nevertheless, the correlation between a fusion temperature and base/acid ratio was not shown well in a higher ratio of Fe2O3/CaO. The differences of fusion temperatures between oxidizing and reducing atmosphere showed close relationship with SiO2/A12O3 ratio rather than with Fe2O3 contents. Multiple regression was used to predict the fusion temperature of coal ashes, and it was established that the major predictors in oxidizing atmosphere were Base/Acid, Fe2O3/CaO, SiO2/Al2O3, and (SiO2/Al2O3)·(Base/Acid) and Base/Acid, Fe2O3/CaO, SiO2 and TiO2 were major ones in reducing atmosphere.
  1. Singer JG, "Properties of Coal Ash," Combustion Fossil Power System, Chap. 3, Combustion Engineering (1981)
  2. Lloyd WG, Riley JT, Zhou S, Tibbitts RL, Energy Fuels, 7, 490 (1993) 
  3. Bryers RW, Taylor TE, J. Eng. Power, 98, 528 (1976)
  4. Winegartner EC, Rhodes BT, J. Eng. Power, 365 (1975)
  5. Nicholls P, Selvig WA, "Clinker Formation as Related to the Fusibility of Coal Ash," u.S. Bureau of Mines Bulletein 364, U.S. Bureau of Mines (1932)
  6. Schaefer RL, "The Relation Between the Chemical Consitituents and the Fusibility of Coal Ash," M.S. Thesis, The Ohio State University (1933)
  7. Huggins FE, Huffman GP, Dunmyre GR, Fuel, 60, 585 (1981) 
  8. Elliott MA, "Combustion Process Technology," Chemistry of Coal Utilization, 2nd Suppel., chap. 20 (1981)
  9. Huggins FE, Huffman GP, Fuel, 60, 577 (1981) 
  10. Kovitskii NV, Karagodina NV, Martinorva MI, Sol. Fuel Chem., 9, 59 (1975)
  11. Unuma H, Sayama S, "Studies of the Fusibility of Coal Ash," Fuel, 65, IPC Businees Press (1986)
  12. Roth RS, Dennis JR, McMurdie HF, "FeO-Al2O3-SiO2 Diagrams of Oxide System," Phase Diagrams for Ceramists, 1, 241 (Fig. 696), the American Ceramic Society (1964)
  13. Roth RS, Dennis JR, McMurdie HF, "FeO-SiO2 Diagrams of Oxide System," Phase Diagrams for Ceramists, 1, 59 (Fig. 80), The American Ceramic Society (1964)
  14. Lee SH, Park CS, Yim YJ, Kim HT, HWAHAK KONGHAK, 34(1), 8 (1996)
  15. 정석우, 김형택, 이시훈, 박주식, "DTF를 이용한 가스화기에서 석탄회분의 Slagging성향에 관한 연구," 에너지공학, 4, 203 (1995)