Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.3, 323-327, May, 2000
고분자 막을 통한 페놀과 α-나프톨의 투과특성에 미치는 Triton X-100의 영향
The Effect of Triton X-100 on the Permeation Characteristics of Phenol and α-Naphthol through Polymeric Membranes
E-mail:
초록
SED(Semi-equilibrium dialysis)는 수용액으로부터 선택적으로 유기오염물질을 제거하는 MEUF(Micellar-enhanced ultrafiltration)에 사용 가능한 계면활성제를 평가하는데 적합한 기술이다. 이 실험에서 Triton X-100은 SED에서 미셀을 형성하는 계면활성제로 사용하기 위하여 제안되었다. SED에서 미셀을 형성하는 계면활성제로 사용할 수 있는지를 시험하기 위하여 고분자 막을 통한 페놀과 나크톨의 투과특성에 미치는 Triton X-100의 영향에 대해서 조사되었다. Triton X-100의 임계미셀농도 (CMC)는 18℃에서 약 0.2%임을 알 수 있다. Triton X-100의 농도에 따라서 배제율이 증가하였고, 소수성이 강한 α-나프톨의 배제율이 페놀보다 더 높았다. 또한 Triton X-100 미셀 속에 용질의 용해와 Triton X-100 미셀로부터 용질의 탈용화의 최적온도는 각각 45℃와 25℃이하이다. SED 결과에서 Triton X-100을 이용하여 저분자량 유기 오염물질의 제거는 임계미셀농도 (CMC) 이상의 용액을 이용하여 분획분자량 (MWCO)이 낮고 온도가 높은 조건하에서 소수성이 강한 용질을 사용하는 것이 가장 이상적이다.
Semi-equilibrium dialysis (SED) is an acceptable method for evaluating surfactants which might be used in the MEUF (Micellarenhanced ultrafiltration) for the rejection of organic pollutants selectively from aqueous solution. In this study, Triton X-100 is proposed to use as surfactants for forming micelles in SED. We investigated the effect of Triton X-100 on the permeation characteristics of phenol and α-naphthol through polymeric membranes to examine the feasibility of surfactant for forming micelles in SED. The CMC (Critical Micelle Concentration) of Triton X-100 was found to be about 0.2% at 18℃. We found to increase rejection coefficient as a function of Triton X-100 concentration, and the rejection coefficient of α-naphthol which may be more hydrophobic is much higher than that of phenol of Triton X-100. Also, we found that the optimum temperatures for the solubilization of solute into Triton X-100 micelles and for the desolubilization of solute from Triton X-1oo micelles are 45℃ and below 25℃, respectively. It was concluded that Triton X-100 might be used for the removal of hydrophobic organic pollutants in aqueous system at the condition of low MWCO (moleculah weight cut off) high temperature and concentration higher than the CMC.
- Choi YK, Lee SB, Lee DJ, Ishigami Y, Kajiuchi T, J. Membr. Sci., in press (1998)
- Christian SD, Scamehorn JF, Surfactant Based Separation Technology, chap. 1 (1989)
- Bhat SN, Smith GA, Tucker EE, Christian SD, Smith W, Scamehorn JF, Ind. Eng. Chem. Res., 26, 1217 (1987)
- Christian SD, Scamehorn JF, Scamehorn JF, Harweli JH, Marcel Dekker, New York, 1 (1989)
- Dunn RO, Scamehorn JF, Christian SD, Sep. Sci. Technol., 20, 257 (1985)
- Dunn RO, Scamehorn JF, Christian SD, Sep. Sci. Technol., 22, 763 (1987)
- Gibbs LL, Scamehorn JF, Christian SD, J. Membr. Sci., 30, 67 (1987)
- Leung PS, A.R. Cooper (ed.), Plenum, New York, 415 (1979)
- Smith GA, Christian SD, Tucker EE, Scamehorn JF, ACS Symp. Ser., 342, 184 (1987)
- Scamehorn JF, Harwell JH, Wasan DT, Shah DO, Ginn ME, Marcel Dekker, New York, 77 (1988)
- Wetlaufer DB, Rosen MJ, Vol. 26, p. 151, Dekker, New York (1987)
- Christian SD, Bhat SN, Tucker EE, Scamehorn JF, Elsayed DA, AIChE J., 34, 189 (1988)
- Scamehorn JF, Ellington RT, Christian SD, Penny BW, Dunn RO, Bhat SN, AIChE Symp. Ser., 82, 48 (1986)
- Kazuhiko K, McGreevy RJ, Schechter RS, J. Colloid Interface Sci., 132(2), 395 (1989)
- Sasaki KJ, Burnett SL, Christian SD, Tucker EE, Scamehorn JF, Langmuir, 5, 363 (1989)
- Tucker EE, Christian SD, Scamehorn JF, Uchiyama H, Guo W, ACS Symp. Ser., No. 491, Chap. 7, 86 (1992)
- Tuncay M, Christian SD, Tucker EE, Taylor RW, Scamehorn JF, Langmuir, 10(12), 4693 (1994)
- Rzeszotarska J, Rejmund F, Ranachowski P, Ultrasonics, 36, 953 (1998)
- MERCK INDEK ELEVENTH EDITION, 7205 (1989)
- Perry H, Chemical Engineering Handbook, 5th ed., McGraw-Hill (1980)