화학공학소재연구정보센터
Korea Polymer Journal, Vol.1, No.2, 134-145, October, 1993
time-Dependent Fracture Behavior in Highly Filled Elastomeric Composites as Model Solid Propellant
Fracture studies at various crack extension rates and test temperatures were carried out for highly filled elastomeric composites. The composites were prepared by controlling compositional variables, such as crosslink density of binder, reactivity and porosity of filler particle surfaces. Master curves of fracture energy, G, were formed by time-temperature shifting. The shift factor, αT, versus temperature relationship was investigated in both WLF and Arrhenius form. The fracture behavior was found to be thermorheologically complex and a weak function of temperature. Three dimensional tear energy surfaces as a function of temperature and crack extension rate have been generated and analyzed by computer graphics. The conditions of molecular structure and compositional variations for the optimum tear energy of highly filled elastomers have been established at given tearing conditions.
  1. Kelley FN, Propellants Manufacture, Hazards and Testing, R.F. Gould, Ed., Adv. in Chem. Ser., 88, Ch. 8 (1969)
  2. Kinloch AJ, Tod DA, Propellants Explos. Pyrotech., 9, 48 (1984) 
  3. Griffith AA, Phil. Trans. Roy. Soc., A221, 163 (1920)
  4. Kinloch AJ, Young RJ, Fracture Behaviour of Polymers, Applied Sci. London (1983)
  5. Rivlin RS, Thomas AG, J. Polym. Sci., 10, 291 (1953) 
  6. Gent AN, Lindley PB, Thomas AG, J. Appl. Polym. Sci., 8, 455 (1964) 
  7. Greensmith HW, Thomas AG, J. Polym. Sci., 8, 455 (1964)
  8. Greensmith HW, Mullins L, Thomas AG, The Chemistry and Physics of Rubber-like Substances, L. Bateman, Ed., John Wiley and Sons, New York, Ch. 10 (1963)
  9. Ahagon A, Gent AN, Kim HJ, Kumagai Y, Rubber Chem. Technol., 48, 896 (1975)
  10. Gent AN, Hamed GR, J. Appl. Polym. Sci., 21, 2817 (1977) 
  11. Miller JB, Smith DC, Kressmam TRE, J. Chem. Soc., 304 (1965) 
  12. Mcgery RK, J. Am. Ceram. Soc., 44, 513 (1961) 
  13. Dannenberg WM, Cotton GR, Colloq. Int. C.N.R.S., 231, 129 (1975)
  14. Kelley FN, Appl. Polym. Symp., 1, 229 (1965)
  15. Seiple RHE, M.S. Thesis, The University of Akron (1985)
  16. Bevington PR, Data Reduction and Error Analysis for the Physical Science, McGraw-Hill, New York, p. 56 (1969)
  17. Ahagon A, Gent AN, J. Polym. Sci. B: Polym. Phys., 13, 1903 (1975)
  18. King NE, Andrew EH, J. Mater. Sci., 13, 1291 (1978) 
  19. Su LJ, Ph.D. Dissertation, The University of Akron (1984)
  20. Williams ML, Landel RF, Ferry JD, J. Am. Chem. Soc., 77, 3701 (1955) 
  21. Doolittle AK, J. Appl. Phys., 22, 1471 (1951) 
  22. Ferry JD, Viscoelastic Properties of Polymers, 3rd Ed., Wiley, New York (1980)
  23. Min KJ, Ph.D. Dissertation, The University of Akron (1987)
  24. Sperling LH, Introduction to Physical Polymer Science, John Wiley & Sons, Ch. 6 (1986)
  25. Plazka DJ, Choy IC, Kelley FN, vonMeerwall E, Su LJ, Rubber Chem. Technol., 56, 866 (1983)
  26. Hsich HSY, Yanyo LC, Ambrosc RJ, J. Appl. Polym. Sci., 29, 2331 (1984) 
  27. Halpin JC, Bueche F, J. Appl. Phys., 35, 3142 (1964) 
  28. Oono R, J. Polym. Sci. A: Polym. Chem., 12, 1383 (1974)
  29. vonMeerwall E, thompson D, Min KJ, Kelley FN, J. Mater. Sci., 21, 1801 (1986) 
  30. Lake GJ, Thomas AG, Proc. R. Soc. London Ser. A, 300, 108 (1967)
  31. Lang FF, Radford KC, J. Mater. Sci., 6, 1197 (1971) 
  32. Mallick PK, Broutman LJ, Mater. Sci. Eng., 18, 63 (1975) 
  33. Young RJ, Beaumont PWR, J. Mater. Sci., 12, 684 (1977) 
  34. Green DJ, Nicholson PS, Embury JD, J. Mater. Sci., 14, 1413 (1979)