화학공학소재연구정보센터
Korea Polymer Journal, Vol.2, No.1, 54-60, April, 1994
Synthesis of Crosslinked Poly(methyl methacrylate) Beads in Emulsifier-free Emulsion Polymerization
Monodisperse poly(methyl methacrylate) beads were prepared in a single stage emulsion polymerization in the absence of emulsifier. The size of poly(methyl methacrylate) beads was almost independent of the polymerization temperature between 60℃ and 90℃. Difference in the molecular weight and molecular weight distribution between polystyrene and poly(methyl methacrylate) suggests that the reaction takes place via a different polymerization mechanism. In order to use poly(methyl methacrylate) beads as filler particles in polymer composites, they were copolymerized with a crosslinking agent, such as allyl methacrylate or ethylene glycol dimethacrylate. Bead size remained unchanged with the variation of crosslinking density. While glass transition temperature increased with increasing concentrration of crosslinking agent. A higher glass transition temperature maninfests that ethylene glycol dimethacrylate is a better crosslinking agent than allyl methacrylate. 5 mol% crosslinking resulted in a 20℃ increase in glass transition temperature.
  1. Krieger IM, Adv. Colloid Interface Sci., 3, 111 (1972) 
  2. Mewis J, Spaull AJB, Adv. Colloid Interface Sci., 6, 173 (1976) 
  3. Rutgers R, Rheol. Acta, 2, 305 (1962) 
  4. Smith WV, Ewart RH, J. Chem. Phys., 5, 217 (1950) 
  5. Odian G, Principles of Polymerization, 2nd ed., Wiley-Interscience, New York, pp. 335-355 (1991)
  6. Harkins WD, J. Polym. Sci., 5, 217 (1950) 
  7. Bradford EB, Vanderhoff JW, J. Appl. Phys., 26, 864 (1955) 
  8. Roe CP, Brass PD, J. Polym. Sci., 24, 401 (1957) 
  9. Ottewill RH, Shaw JN, Kolloid Z.U.Z. Polym., 218, 34 (1967) 
  10. Vidotto G, Crosato-Arualdi A, Talamini G, Macromol. Chem., 134, 41 (1970) 
  11. Brooks BW, Qureshi MK, Polymer, 17, 740 (1976) 
  12. Feeney PJ, Napper DH, Gilbert RG, Macromolecules, 17, 2520 (1984) 
  13. Delgado J, El-Aasser MS, Silebi CA, Vanderhoff JW, J. Polym. Sci. A: Polym. Chem., 27, 193 (1989) 
  14. Casey BS, Maxwell Ia, Morrison BR, Gibert RG, Makromol. Chem. Macromol. Symp., 31, 1 (1990)
  15. Matsumoto T, Ochi A, Kobunshi Kogaku, 22, 481 (1965)
  16. Goodall AR, Wilkinson MC, Hearn J, J. Polym. Sci. A: Polym. Chem., 15, 2193 (1977)
  17. Suwa T, Watanabe T, Okamoto J, Machi S, J. Polym. Sci., 17, 1 (1979) 
  18. Ugelstad J, Mork PC, Adv. Colloid Interface Sci., 13, 1869 (1980)
  19. Goodwin JW, Ottewill RH, Owens SM, Makromol. Chem. Suppl., 10, 499 (1985) 
  20. Wilkinson MC, Hearn J, Karpowicz FH, Chainey M, Part. Sci. Tech., 5, 65 (1987)
  21. Odian G, Principles of Polymerization, 2nd ed., Wiley-Interscience, New York, pp. 241-243 (1991)
  22. Zou D, Derlich V, Gandhi K, Park M, Sun L, Kriz D, Lee YD, Kim G, Aklonis JJ, Salovey R, J. Polym. Sci. A: Polym. Chem., 28, 1909 (1990) 
  23. Song Z, Poehlein GW, J. Colloid Interface Sci., 128, 486 (1989) 
  24. Song Z, Poehlein GW, J. Colloid Interface Sci., 128, 501 (1989) 
  25. Wilkinson MC, Sherwood R, Hearn J, Goodall AR, Br. Polym. J., 11, 1 (1979)
  26. Andreopoulos AG, J. Appl. Polym. Sci., 34, 2389 (1987) 
  27. Nieuwunhuis EA, Vrij A, J. Colloid Interface Sci., 72, 321 (1979) 
  28. Yeliseeva VI, Br. Polym. J., 7, 33 (1975)
  29. Ono H, Saeki H, Br. Polym. J., 7, 21 (1975)
  30. Suzawa T, Shirahara H, Fujimoto T, J. Colloid Interface Sci., 86, 144 (1950) 
  31. Bovey FA, Kolthoff IM, J. Polym. Sci., 5, 487 (1950) 
  32. Song Z, Poehline GW, J. Polym. Sci. A: Polym. Chem., 28, 2359 (1990) 
  33. Kim JH, Chaney M, El-Aasser Ms, Vanderhoff JW, J. Polym. Sci. A: Polym. Chem., 30, 171 (1992) 
  34. Guo JS, Sudol ED, Vanderhoff JW, El-Aasser MS, J. Polym. Sci. A: Polym. Chem., 30, 691 (1992) 
  35. Guo JS, Sudol ED, Vanderhoff JW, El-Aasser MS, J. Polym. Sci. A: Polym. Chem., 30, 703 (1992) 
  36. Billmeyer FW, Textbook of Polymer Science, 3rd ed., Wiley, New York, pp. 68-71 (1980)
  37. Ding ZY, Aklonis JJ, Salovey R, J. Polym. Sci. B: Polym. Phys., 29, 1035 (1991)