화학공학소재연구정보센터
Korea Polymer Journal, Vol.6, No.2, 145-152, June, 1998
Molecular Mechanics Calculations to Predict Polymer Miscibility
To determine the miscibility of polymer blends, the heat of mixing (ΔHmix) of several polymer pairs was calculated using the two segment approach by molecular mechanics calculation which was modified for the mixture of flexible polymers by Tiller et al. The initial conformations of short polymer segments were constructed with the Rotational-Isomerics-State Monte Carlo method or the molecular dynamics method. T재 polymer segments were docked together and optimized in geometry to obtain the energy minimized. The computational results for several flexible polymer pairs were generally coincidental with miscibility behaviors known from the literature. The miscible polyvinylacetate (PVAC)/polyvinylnitrate (PVNT) blend and the inniscible PVAC/polyacrylronitrile (PAN) blend, for examples, show the heats of mxing of -2.95 and +2.77 kcal/㎤, respectively.
  1. Paul DR, Newman S, Polymer Blends I & II, Academic Press, New York (1978)
  2. Olabisi O, Robeson LM, Shaw MT, Polymer-Polymer Miscibility, Academic Press, New York (1979)
  3. Nelson GV, Jacobson SH, Gordon DJ, Chem. Design Autom. News, 4, 198 (1992)
  4. Jacobson SH, gordon DJ, Nelson GV, Balazs A, Adv. Mater., 4, 198 (1992) 
  5. Tiller AR, Gorella B, Polymer, 35(15), 3251 (1994) 
  6. Polymer User Guide Supplement for Release 237, version 7.0, MSI, San Diego (1995)
  7. Flory PJ, Statistical Mechanics of Chain Molecules, Hanser Press, New York (1989)
  8. Discover User Guide, Version 2.9.5, MSI, San Diego (1994)
  9. Van Krevelen DW, Hoftyzer PJ, Properties of Polymers, Their Estimation and Correlation with Chamical Structure, 3rd Ed., Elsevier Press, New York (1993)
  10. Bicerano J, Prediction of Polymer Properties, Marcel Dekker Press, New York (1993)
  11. Slonimskii GL, J. Polym. Sci., 30, 625 (1958) 
  12. Bartenev GM, Kongarov GS, Rubber Chem. Technol., 36, 668 (1963)
  13. Margh PA, Voet A, Price LD, Rubber Chem. Technol., 41, 344 (1967)
  14. Bernstein RE, Wahrmund DC, Barlow JW, Paul DR, Polym. Eng. Sci., 18, 1220 (1978) 
  15. Kern RJ, Slocombe RJ, J. Polym. Sci., 15, 183 (1955) 
  16. Nandi AK, Mandal BM, Bhattacharyya SN, Macromolecules, 18, 1454 (1985) 
  17. Dorby A, Boyer-Kawenoki F, J. Polym. Sci., 2, 90 (1974) 
  18. Akiyama S, Inaba N, Kaneko R, Chem. High Polym. Jpn., 26, 529 (1969)
  19. Godovskii YK, Zharikova ZF, Malinskii YM, Polym. Sci. USSR, 23, 149 (1981) 
  20. Zverev MP, Bychko RA, Kinkin AA, Vysokomol. Soedin. Part B, 11, 438 (1969)
  21. Slonimskii GL, J. Polym. Sci., 30, 625 (1958) 
  22. Fuchs O, Angew. Makromol. Chem., 6, 79 (1969) 
  23. Schneider IA, Vasile C, Eur. Polym. J., 6, 695 (1970) 
  24. Vasile C, Ioan S, Asandei N, Schneider IA, Angew. Makromol. Chem., 6, 245 (1969)
  25. Dorby A, Boyer-Kawenoki, J. Polym. Sci., 2, 90 (1947) 
  26. Hughes LJ, Britt GE, J. Appl. Polym. Sci., 5, 337 (1961)