화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.11, 1964-1972, November, 2014
Experimental analysis and development of correlations for gas holdup in high pressure slurry co-current bubble columns
E-mail:
The effect of liquid and gas velocities, solid concentrations, and operating pressure has been studied experimentally in a 15 cm diameter air-water-glass beads bubble column. The superficial gas and liquid velocities varied from 1.0 to 40.00 cm/s and 0 to 16.04 cm/s, respectively, while the solid loading varied from 1 to 9%. The gas holdup in the column was reduced sharply as we switched from batch to co-current mode of operation. At low gas velocity, the effect of liquid velocity was insignificant; while at high gas velocity, increasing liquid velocity decreased the gas holdup. Drift flux approach was applied to quantify the combined effect of liquid and gas velocities over gas holdup. For co-current three phase flows, the gas holdup decreased with increase in solid loading for all pressures. But for batch operations, when solid loading was 5% or more, settling started leading to higher gas holdup. Increasing pressure from atmospheric conditions increased the gas holdup significantly, flattening asymptotically.
  1. Degaleesan S, Dudukovic M, Pan Y, AIChE J., 47(9), 1913 (2001)
  2. Shah YT, Godbole SP, Deckwer WD, AIChE J., 28, 353 (1982)
  3. Li H, Prakash A, Ind. Eng. Chem. Res., 36(11), 4688 (1997)
  4. Deckwer WD, Schumpe A, Chem. Eng. Sci., 48, 889 (1993)
  5. Shah YT, Kulkarni AA, Wieland JH, Carr NL, Chem. Eng. J., 26, 95 (1983)
  6. Zahradnik J, Fialova M, Ruzicka M, Drahos J, Kastanek F, Thomas NH, Chem. Eng. Sci., 52(21-22), 3811 (1997)
  7. Lin TJ, Tsuchiya K, Fan LS, AIChE J., 44(3), 545 (1998)
  8. Hol PD, Heindel TJ, Ind. Eng. Chem. Res., 44(13), 4778 (2005)
  9. Letzel HM, Schouten JC, Krishna R, van den Bleek CM, Chem. Eng. Sci., 54(13-14), 2237 (1999)
  10. Tang CZ, Heindel TJ, Chem. Eng. Sci., 61(10), 3299 (2006)
  11. Tang CZ, Heindel TJ, Chem. Eng. Sci., 59(3), 623 (2004)
  12. Kara S, Kelkar BG, Shah YT, Carr NL, Ind. Eng. Chem. Pro. Des. Dev., 21, 584 (1982)
  13. Khare AS, Joshi JB, Chem. Eng. J., 44, 11 (1990)
  14. Kelkar BG, Shah YT, Carr NL, Ind. and Eng. Chem. Pro. Des. and Dev., 23, 308 (1984)
  15. Deswart JW, Vanvliet RE, Krishna R, Chem. Eng. Sci., 51(20), 4619 (1996)
  16. Fan LS, Yang GQ, Lee DJ, Tsuchiya K, Luo X, Chem. Eng. Sci., 54(21), 4681 (1999)
  17. Krishna R, Ellenberger J, Maretto C, Int. Commun. Heat Mass Trans., 26, 467 (1999)
  18. Banisi S, Finch JA, Laplante AR, Weber ME, Chem. Eng. Sci., 50(14), 2329 (1995)
  19. Mena PC, Ruzicka MC, Rocha FA, Teixeira JA, Drahos J, Chem. Eng. Sci., 60(22), 6013 (2005)
  20. Tsuchiya K, Furumoto A, Fan LS, Zhang JP, Chem. Eng. Sci., 52(18), 3053 (1997)
  21. Luo X, Zhang J, Tsuchiya K, Fan LS, Chem. Eng. Sci., 52(21-22), 3693 (1997)
  22. Gandhi B, Prakash A, Bergougnou MA, Powder Technol., 103(2), 80 (1999)
  23. Su XF, Heindel TJ, Can. J. Chem. Eng., 81(3-4), 412 (2003)
  24. Krishna R, Deswart JW, Ellenberger J, Martina GB, Maretto C, AIChE J., 43(2), 311 (1997)
  25. Kumar S, Munshi P, Khanna A, Procedia Engineering, 42, 782 (2012)
  26. Oyevaar MH, Bos R, Westerterp KR, Chem. Eng. Sci., 46, 1217 (1992)
  27. Letzel MH, AIChE J., 44(10), 2333 (1998)
  28. Li Y, Zhang JP, Fan LS, Chem. Eng. Sci., 55(20), 4597 (2000)
  29. Kemoun A, Ong BC, Gupta P, Al-Dahhan MH, Dudukovic MP, Int. J. Multiph. Flow, 27(5), 929 (2001)
  30. Behkish A, Lemoine R, Sehabiague L, Oukaci R, Morsi BI, Chem. Eng. J., 127, 69 (2007)
  31. Zuber N, Findlay JA, Int. J. Heat Transfer, 87, 453 (1965)
  32. Wallis GB One-dimensional two-phase flow, McGraw-Hill, NY, USA (1969)
  33. Nacef S, Poncin S, Bouguettoucha A, Wild G, Chem. Eng. Sci., 62(24), 7530 (2007)
  34. Tang CZ, Heindel TJ, Int. J. Multiph. Flow, 32(7), 850 (2006)
  35. Clark NN, Egmond JWV, Nebiolo EP, Int. J. Multiphase Flow, 16, 261 (1990)
  36. Inga JR, Morsi BI, Energy Fuels, 10(3), 566 (1996)
  37. Deckwer WD, John Wiley and Sons, NY (1992)
  38. Fox JM, Catal. Lett., 7, 281 (1990)
  39. Kumar S, Munshi P, Khanna A, Procedia Engineering, 42, 842 (2012)
  40. Kumar S, Srinivasulu N, Munshi P, Khanna A, Can. J. Chem. Eng., 91(3), 516 (2013)
  41. Merchuk JC, Stein Y, AIChE J., 27, 377 (1981)
  42. Mendelson HD, AIChE J., 13, 250 (1967)
  43. Ranade VV, Computational flow modeling for chemical reactor engineering, Academic Press, USA (2002)
  44. Yoo DH, Tsuge H, Terasaka K, Mizutani K, Chem. Eng. Sci., 52(21-22), 3701 (1997)
  45. Kang Y, Cho YJ, Woo KJ, Kim KI, Kim SD, Chem. Eng. Sci., 55(2), 411 (2000)
  46. Kang Y, Cho YJ, Woo KJ, Kim SD, Chem. Eng. Sci., 54(21), 4887 (1999)
  47. Hillmer G, Weismantel L, Hofmann H, Chem. Eng. Sci., 49(6), 837 (1994)