화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.52, No.6, 834-839, December, 2014
반응표면분석법을 이용한 Arthrobacter sp. PAMC 25486의 카로티노이드 생산배지 최적화
Optimization of Medium for Carotenoids Production by Arthrobacter sp. PAMC 25486 Using Response Surface Methodology
E-mail:
초록
본 논문에서는 반응표면분석법을 이용한 Arthrobacter sp. PAMC 25486의 carotenoids 생산 배지의 최적화를 수행하였다. Placket-Burman 방법을 이용하여 yeast extract, MgSO4, dextrose가 carotenoids의 생산에 영향을 미치는 주요인자인 것을 확인하였다. 반응표면분석 방법을 이용하여 최대 carotenoids 생산 농도를 갖는 yeast extract, MgSO4, dextrose의 농도를 계산한 결과 1 g/L yeast extract, 0.0879 g/L MgSO4 and 1 g/L dextrose의 농도에서 최대 307 mg/L 의 carotenoids 농도가 예측됐으며, 실제 배양 결과 288 mg/L carotenoids가 얻어졌다. 얻어진 농도 값은 최적화 이전의 값에 비하여 200% 이상 증가하였다. 이러한 결과로부터 미생물 배양에 의한 carotenoids 생산을 증가시키기 위한 배지최적화 방법으로서 반응표면분석법의 유용성을 확인할 수 있었다.
This study was conducted to optimize the medium composition for carotenoid production in Arthrobacter sp. PAMC 25486 through response surface methodology (RSM). Using a Placket-Burman design, from which yeast extract, MgSO4 and dextrose were identified as the significant factors affecting carotenoids production. RSM studies for carotenoids production by Arthrobacter sp. PAMC 25486 have been carried out for three parameters of yeast extract, MgSO4 and dextrose concentrations. These significant factors were optimized by experiments and RSM, as 1 g/L yeast extract, 0.0879 g/L MgSO4 and 1 g/L dextrose. The experimentally obtained concentration of carotenoid was 288 mg/L, and it became 2-fold increase on concentration before optimization.
  1. An GH, Schumn DB, Johnson EA, Appl. Environ. Microbiol., 55, 116 (1989)
  2. Bendich A, Proceedings of the Nutrition Society, 50, 363 (1991)
  3. Hong SP, Journal of Food Technology, 9, 127 (1996)
  4. Bauerfeind JC, Academic Press, New York, 1 (1981)
  5. Pierr A, Trends Food Sci. Technol., 8, 406 (1997)
  6. Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H, J. Nat. Prod., 69, 443 (2006)
  7. Britton G, Academic Press, London, Methods in Plant Biochemistry., 7, 473 (1991)
  8. Kearsley MW, Rodriguez N, Journal of Food Technology, 16, 421 (1981)
  9. De Hann A, Burke RM, De Bont JAM, Med. Fac. Landbouww. Rijksuniv. Gent., 56, 1655 (1991)
  10. Chumpolkulwong N, Kakizono T, Nagai S, Nishio N, J. Ferment. Bioeng., 83(5), 429 (1997)
  11. Suh IS, Joo HN, Lee CG, J. Biotechnol., 125, 540 (2006)
  12. Lee JH, Kim YS, Choi TJ, Lee WJ, Kim YT, International Journal of Systematic and Evolutionary Microbiology, 54, 1699 (2004)
  13. Riter LS, Vitek O, Gooding KM, Hodge BD, Julian RK Jr., Journal of Mass Spectrometry, 40, 565 (2005)
  14. Ferdosh S, Sarker MZI, Rahman NNNA, Akand MJH, Ghafoor K, Awang MB, Kadir MOA, Korean J. Chem. Eng., 30(7), 1466 (2013)
  15. BoX EP, Draper R, “Empirical Model-building and Response Surface,” John wiley & Sons, New York (1987)
  16. Plackett RL, Bruman JP, J. Biosci. Bioeng., 33, 305 (1946)
  17. Yoon SJ, Shin WS, Chun GT, Jeong YS, Korean Society for Biotechnology and Bioengineering Journal, 22, 288 (2007)
  18. Kim YH, Kang SW, Lee JH, Chang HI, Tun CW, Paik HD, Kang CW, Kim SW, Korean Society for Biotechnology and Bioengineering Journal, 21, 479 (2006)
  19. Pringsheim EG, J. Phycol., 2, 1 (1966)
  20. Vijayalakshmi G, Shobha B, Vanajakshi V, Divakar S, Manohar B, European Food Research and Technology, 3, 234 (2001)
  21. Chuang Z, Lianfang HE, Yucang Z, China Brewing, 11 (2010)
  22. Chandi GK, Singh SP, Gill BS, Sogi DS, Singh P, Food Science and Biotechnology, 19, 881 (2010)