화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.24, No.4, 180-185, April, 2014
Simultaneous Synthesis and Consolidation of Nanostructured MoSi2-NbSi2 Composite by High-Frequency Induction Heated Sintering and Its Mechanical Properties
E-mail:
The current concern about these materials (MoSi2 and NbSi2) focuses on their low fracture toughness below the ductile-brittle transition temperature. To improve the mechanical properties of these materials, the fabrication of nanostructured and composite materials has been found to be effective. Nanomaterials frequently possess high strength, high hardness, excellent ductility and toughness, and more attention is being paid to their potential application. In this study, nanopowders of Mo, Nb, and Si were fabricated by high-energy ball milling. A dense nanostructured MoSi2-NbSi2 composite was simultaneously synthesized and sintered within two minutes by high-frequency induction heating method using mechanically activated powders of Mo, Nb, and Si. The high-density MoSi2-NbSi2 composite was produced under simultaneous application of 80MPa pressure and an induced current. The sintering behavior, mechanical properties, and microstructure of the composite were investigated. The average hardness and fracture toughness values obtained were 1180 kg/mm2 and 3MPa·m1/2, respectively. These fracture toughness and hardness values of the nanostructured MoSi2-NbSi2 composite are higher than those of monolithic MoSi2 or NbSi2.
  1. Mitra R, Mahajan YR, Prasad NE, Chiou WA, Ganguly C, Key Eng. Mater., 108, 11 (1995)
  2. Milne J, Instant Heat, Kinetic Metals Inc., Derby, Connecticut (1985)
  3. Touloukian YS, Powell RW, Ho CY, Klemens PG, Thermal Conductivity, IFI/Plenum, New York. (1970)
  4. Sauthoff G, Intermetallics, VCH Publishers, New York. (1995)
  5. Ohya Y, Hoffmann M, Petzow G, J. Mater. Sc. Lett., 12, 149 (2004)
  6. Ko IY, Kim BR, Nam KS, Moom BM, Lee BS, Shon IJ, Met. Mater. Int., 15, 399 (2009)
  7. Shon IJ, Ko IY, Kang HS, Hong KT, Doh JM, Yoon JK, Met. Mater. Int., 18, 115 (2012)
  8. Ohya Y, Hoffmann MJ, Petzow G, J. Am. Ceram. Soc., 75, 2479 (1992)
  9. Bhaumik SK, Divakar C, Singh AK, Upadhyaya GS, J. Mater. Sci. Eng. A, 279, 275 (2000)
  10. Shon IJ, Na KI, Doh JM, Park HK, Yoon JK, Met. Mater. Int., 19, 99 (2013)
  11. Nalwa HS, Hanbook of Nanostructured Materials and Nanotechnology. Academic Press, Tokyo. (1996)
  12. Berger S, Porat R, Rosen R, Prog. Mater. Sci., 42(1-4), 311 (1997)
  13. Lee GW, Shon IJ, Korean. J. Met. Mater., 51, 95 (2013)
  14. Shon IJ, Lee GW, Doh JM, Yoon JK, Electron. Mater. Lett., 9, 219 (2013)
  15. Charlot F, Gaffet E, Zeghmati B, Bernard F, Liepce JC, Mater. Sci. Eng., A262, 279 (1999)
  16. Gauthier V, Josse C, Bernard F, Gaffet E, Larpin JP, Mater. Sci. Eng., A262, 117 (1999)
  17. Beyer MK, Clausen-Schaumann H, Chem. Rev., 105(8), 2921 (2005)
  18. Kwak SM, Park HK, Shon IJ, Korean. J. Met. Mater., 51, 314 (2013)
  19. Shon IJ, Du SL, Doh D, Yoon JK, Met. Mater. Int., 19, 1041 (2013)
  20. Kim NR, Cho SW, Kim W, Shon IJ, Korean. J. Met. Mater., 50, 34 (2012)
  21. Suryanarayana C, Grant Norton M, X-ray Diffraction A Practical Approach, Plenum Press, New York. (1998)
  22. Shen ZJ, Johnsson M, Zhao Z, Nygren M, J. Am. Ceram. Soc., 85(8), 1921 (2002)
  23. Garay JE, Anselmi-Tamburini U, Munir ZA, Glade SC, Asoka-KUmar P, Appl. Phys. Lett., 85, 573 (2004)
  24. Fridman JR, Garay JE, Anselmi-Tamburini U, Munir ZA, Intermetallics, 12, 589 (2004)
  25. Garay JE, Anselmi-Tamburini U, Munir ZA, Acta Mater., 51, 4487 (2003)
  26. Anstis GR, Chantikul P, Lawn BR, Marshall DB, J. Am. Ceram. Soc., 64, 533 (1981)
  27. Vasudevan AK, Petrovic JJ, Mater. Sci. Eng. A, 155, 1 (1992)
  28. Chu F, Lei M, Maloy SA, Petrovic JJ, Mitchell TE, Acta Mater., 44, 3035 (1996)
  29. Wade RK, Petrovic JJ, J. Am. Ceram. Soc., 75, 16820 (1992)