화학공학소재연구정보센터
Clean Technology, Vol.20, No.4, 439-448, December, 2014
포항철강산업단지의 온실가스 잠재 감축량 분석
Analysis of Potential Greenhouse Gas Mitigation in Pohang Steel Industrial Complex
E-mail:
초록
포항철강산업단지의 온실가스 잠재 감축량에 대한 연구를 수행하였다. 2010년 기준 철강산단의 온실가스 배출량은 4,174,000~4,574,000 tCO2-eq로 추정되고, 정부의 온실가스 감축 목표를 달성하기 위해서 2020년까지 최소 552,000 tCO2-eq의 온실가스 감축이 요구된다. 온실가스 잠재 감축량을 추정하기 위하여, 자발적 온실가스 감축사업에 등록된 사례 기술들을 온실가스 목표관리제도 대상으로 지정된 51개 기업의 공정에 적용하였다. 기술적 용이성과 투자비 회수기간 측면에서 분석한 결과, 연료전환과 폐열회수를 이용하여 단기적으로 160,000 tCO2-eq를 감축할 수 있는 것으로 예상된다. 중기적으로는 철강금속 산업 분야에 적용 가능한 열 부문과 전기 부문 기술을 이용하면 각각 229,000과 125,000 tCO2-eq를 감축할 수 있을 것으로 예상된다. 온실가스 예상 목표 감축량 대비 중.단기 기술로 달성할 수 없는 차이(38,000 tCO2-eq)에 대해서는 장기적으로 근본적인 공정 혁신과 최신 설비 및 신재생에너지 기술 도입을 통한 감축 노력이 필요하다.
The potential mitigation of greenhouse gas (GHG) is studied in the Pohang steel industrial complex (PHSIC). The total GHG emission in 2010 is estimated to be in the range from 4,174,000 to 4,574,000 tCO2-eq in PHSIC. To meet the target proposed by the government, it is needed to reduce 552,000 tCO2-eq at minium by 2020. To estimate the potential amount of GHG reduction, the technologies used in the voluntary carbon reduction projects are applied to 51 companies which are subject to GHG target management. From the viewpoint of technological availability and payback period, the fuel conversion and waste heat recovery have an advantage in the short term with a possibility to reduce 160,000 tCO2-eq. In the mid term, the thermal technologies in steel and iron industry have the potential to cut 229,000 tCO2-eq, while the electrical technologies have the potential of 125,000 tCO2-eq reduction. The gap between the target GHG mitigation and potential reduction using the short and mid term technologies is about 38,000 tCO2-eq, which should be compensated by the fundamental process innovation and the implementation of the most cutting-edge technologies including renewable energy.
  1. Choi KS, Ha SA, J. Environ. Sci., 20, 207 (2011)
  2. Lee GG, Jung IG, Chun HD, Clean Technol., 17(4), 406 (2011)
  3. Choi YC, Park TJ, Hong JC, Cho SY, J. Energy Eng., 8, 242 (1999)
  4. Lee DK, Park SU, Lee SJ, J. Energy Eng., 10, 327 (2001)
  5. Park IH, Park JT, Yoo SY, Korea J. Air-Condit. Refrigerat. Eng., 14(10), 811 (2002)
  6. Park JT, et al., “An Investigation on Waste Heat of Domestic Industry and Optimum Heat Recovery Technology,” Report of the Ministry of Commerce, Industry, and Energy (2003)
  7. Kim LH, Chang WS, Hong JJ, J. Energy Eng., 17, 125 (2008)
  8. Lee H, et al., “Network Construction of Waste Heat Recovery in Reheating Furnace of Hot Rolling Mill,” Report of Gyeongbuk EIP, KICOX, the Ministry of Knowledge Economy (2009)
  9. Chang HS, Kim TO, “Assesment of Greenhouse Gas in Local Government (Gyeongju, Gumi, Mungyeong, Pohang),” Report of Gyeongbuk Regional Environmental Technology Development Center, Environment Management Corporation (2009)
  10. Greenhouse Gas Verification Center, “Examples of Feasibility Analysis on the Project of Greenhouse Gas Reduction,” Workshop on the Project of Greenhouse Gas Reduction, KEMCO, Feb. 12-13, Anmyundo (2009)
  11. http://co2.kemco.or.kr/directory/toe.asp
  12. http://www.citygas.or.kr/gas_intro/gas_intro/ingre.jsp