화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.11, 1214-1220, November, 2014
Effect of membrane electrode assembly fabrication method on the single cell performances of polybenzimidazole-based high temperature polymer electrolyte membrane fuel cells
E-mail:,
Membrane electrode assemblies (MEAs) for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) were fabricated using acid-doped polybenzimidazole (PBI) as the electrolyte membrane and polytetrafluoroethylene (PTFE) as the electrode binder. PTFE concentrations of 20, 30, and 45 wt% in the electrode were evaluated to determine the optimal binder content. Additionally, the influence of applying a pressing process during MEA fabrication on the electrode performance was examined. When MEA was prepared without the pressing process, the electrode containing 20 wt% PTFE exhibited the best cell performance (338 mA cm-2 at 0.6 V). However, when MEA was prepared with the pressing process, the electrode containing 45 wt% PTFE exhibited the best cell performance (281 mA cm-2 at 0.6 V). This result is because of the inclusion of the pressing process, as gas permeability is hindered by the transfer of excess phosphoric acid from the electrolyte membrane to the electrodes.
  1. Peighambardoust SJ, Rowshanzamir S, Amjadi M, Int. J. Hydrog. Energy, 35(17), 9349 (2010)
  2. Frey T, Linardi M, Electrochim. Acta, 50(1), 99 (2004)
  3. Bose S, Kuilaa T, Nguyenb TXH, Kim NH, Lau KT, Lee JH, Prog. Polym. Sci., 36, 813 (2011)
  4. Li Q, Jensen JO, Savinell RF, Bjerruma NJ, Prog. Polym. Sci., 34, 449 (2009)
  5. Wang CP, Chu HS, Yan YY, Hsueh KL, J. Power Sources, 170(2), 235 (2007)
  6. Pan C, He RH, Li QF, Jensen JO, Bjerrum NJ, Hjulmand HA, Jensen AB, J. Power Sources, 145(2), 392 (2005)
  7. Chandan A, Hattenberger M, El-Kharouf A, Du SF, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W, J. Power Sources, 231, 264 (2013)
  8. Wainright JS, Wang JT, Weng D, Savinell RF, Litt M, Electrochem. Soc., 142, 121 (1995)
  9. Xiao L, Zhang H, Scanlon E, Ramanathan LS, Choe EW, Rogers D, Apple T, Benicewicz BC, Chem. Mater., 17, 5328 (2005)
  10. Yu S, Benicewicz BC, Macromolecules, 42(22), 8640 (2009)
  11. Mustarelli P, Quartarone E, Grandi S, Angioni S, Magistris A, Solid State Ion., 225, 228 (2012)
  12. Hazarika M, Jana T, ACS Appl. Mater. Interfaces, 4, 5256 (2012)
  13. Staiti P, Minutoli M, Hocevar S, J. Power Sources, 90(2), 231 (2000)
  14. Kim JH, Kim HJ, Lim TH, Lee HI, J. Power Sources, 170(2), 275 (2007)
  15. Lee JW, Lee DY, Kim HJ, Nam SY, Choi JJ, Kim JY, Jang JH, Cho E, Kim SK, Hong SA, Lim TH, J. Membr. Sci., 357(1-2), 130 (2010)
  16. Lee HJ, Lee DH, Henkensmeier D, Jang JH, Cho EA, Kim HJ, Kim H, Bull. Korean Chem. Soc., 33, 103279 (2012)
  17. Lee HJ, Kim BG, Lee DH, Park SJ, Kim Y, Lee JW, Henkensmeier D, Nam SW, Kim HJ, Kim H, Kim JY, Int. J. Hydrogen Energy, 36(9), 5521 (2011)
  18. Kim HJ, An SJ, Kim JY, Moon JK, Cho SY, Eun YC, Yoon HK, Park Y, Kweon HJ, Shin EM, Macromol. Rapid Commun., 25(15), 1410 (2004)
  19. Ergun D, Devrim Y, Bac N, Eroglu I, J. Appl. Polym. Sci., 124, 267 (2012)
  20. Wannek C, Lehnert W, Mergel J, J. Power Sources, 192(2), 258 (2009)
  21. Mamlouk M, Scott K, Int. J. Energy Res., 35(6), 507 (2011)
  22. Su HN, Pasupathi S, Bladergroen BJ, Linkov V, Pollet BG, J. Power Sources, 242, 510 (2013)
  23. Park JO, Hong SG, Kim T, Kwon K, Suh S, Cho M, Yoo D, ECS Trans., 3, 447 (2006)
  24. Pan C, Li QF, Jensen JO, He RH, Cleemann LN, Nilsson MS, Bjerrum NJ, Zeng QX, J. Power Sources, 172(1), 278 (2007)
  25. Makharia R, Mathias MF, Bakerb DR, J. Electrochem. Soc., 152, 970 (2005)
  26. Gomadam PM, Weidner JW, Int. J. Energy Res., 29(12), 1133 (2005)
  27. Lasia A, Modern Aspects of Electrochemistry, 32, 143 (2002)
  28. Zhang JL, Xie Z, Zhang JJ, Tanga YH, Song CJ, Navessin T, Shi ZQ, Song DT, Wang HJ, Wilkinson DP, Liu ZS, Holdcroft S, J. Power Sources, 160(2), 872 (2006)