화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.21, No.12, 660-665, December, 2011
수열합성법을 이용하여 우선 배향된 ZnO 나노와이어 성장 및 발광 특성
Growth and UV Emission of Preferred Oriented ZnO Nanowires Using Hydrothermal Process
E-mail:,
1-D ZnO nanowires have been attractive for their peculiar properties and easy growth at relatively low temperature. The length, diameter, and density of ZnO nanowires were determined by the several synthetic parameters, such as PEI concentration, growth time, temperature, and zinc salt concentration. The ZnO nanowires were grown on the <001> oriented seed layer using the hydrothermal process with zinc nitrate and HMTA (hexamethylenetetramine) and their structure and optical properties were characterized. The morphology, length and diameter of the nanowires were strongly affected by the relative and/or absolute concentration of Zn2+ and OH.1 and the hydrothermal temperature. When the concentrations of the zinc nitrate HMTA were the same as 0.015 M, the length and diameter of the nanowires were 1.97 μm and 0.07 μm, respectively, and the aspect ratio was 28.1 with the preferred orientation along the <001> direction. XRD and TEM results showed a high crystallinity of the ZnO nanowires. Optical measurement revealed that ZnO nanowires emitted intensive stimulated UV at 376 nm without showing visible emission related to oxygen defects.
  1. Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Appl. Phys. Lett., 83, 1689 (2003)
  2. Hofmann DM, Pfisterer D, Sann J, Meyer BK, Tena-Zaera R, Munoz-Sanjose V, Frank T, Pensl G, Appl. Phys. A, 88, 147 (2007)
  3. Cho MY, Kim MS, Kim GS, Choi HY, Jeon SM, Yim KG, Lee DY, Kim JS, Kim JS, Lee JI, Leem JY, Korean J. Mater. Res., 20(5), 262 (2010)
  4. Hu JQ, Bando Y, Appl. Phys. Lett., 82, 1401 (2003)
  5. Mo M, Yu JC, Zhang LZ, Li SKA, Adv. Mater., 17(6), 756 (2005)
  6. Govender K, Boyle DS, Kenway PB, O’Brien P, J. Mater. Chem., 14, 2575 (2004)
  7. Qiu J, Li X, Zhuge F, Gan X, Gao X, He W, Park SJ, Kim HK, Hwang YH, Nanotechnology, 21, 195602 (2010)
  8. Zhou H, Fang G, Yuan L, Wang C, Yang X, Huang H, Zhou C, Zhao X, Appl. Phys. Lett., 94, 013503 (2009)
  9. Yang PD, Yan HQ, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He RR, Choi HJ, Adv. Funct. Mater., 12(5), 323 (2002)
  10. Liu B, Zeng HC, J. Am. Chem. Soc., 125(15), 4430 (2003)
  11. Chae KW, Zhang Q, Kim JS, Jeong YH, Cao G, Beilstein J. Nanotechnol., 1, 128 (2010)
  12. Liang JB, Liu JW, Xie Q, Bai S, Yu WC, Qian YT, J. Phys. Chem. B, 109(19), 9463 (2005)
  13. Meyer B, Marx D, Phy. Rev. B Condens. Matter, 67, 035403 (2003)
  14. Zhou Y, Wu WB, Hu GD, Wu HT, Cui SG, Mater. Res. Bull., 43(8-9), 2113 (2008)
  15. Wang Z, Qian XF, Yin J, Zhu ZK, Langmuir, 20(8), 3441 (2004)
  16. Tanaka M, Taguchi M, Matsuyama T, Sawada T, Tsuda S, Nakano S, Hanafusa H, Kuwano Y, Jpn. J. Appl. Phys., 31, 3518 (1992)
  17. Tanaka M, Okamoto S, Tsuge S, Kiyawa S, in Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, 1, 955 (2003). (2003)
  18. Matsumoto Y, Hirata G, Takakura H, Okamoto H, Hamakawa Y, J. Appl. Phys., 67, 6538 (1990)
  19. Tsunomura Y, Yoshimine Y, Taguchi M, Baba T, Kinoshita T, Kanno H, Sakata H, Maruyama E, Tanaka M, Sol. Energy Mater. Sol. Cells, 93(6-7), 670 (2009)
  20. Dauwe S, Schmidt J, Hezel R, in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (New Orleans, Louisiana, May, 2002), p.1246. DOI : 10.1109/ PVSC.2002.1190834. (2002)
  21. Angermann H, Henrion W, Roseler A, Rebien M, Mater. Sci. Eng. B, 73, 178 (2000)
  22. Angermann H, Rappich J, Korte L, Sieber I, Conrad E, Schmidt M, Hubener K, Polte J, Hauschild J, Appl. Surf. Sci., 254(12), 3615 (2008)
  23. Angermann H, Rappich J, Sieber I, Hubener K, Hauschild J, Anal. Bio Chem., 390, 1463 (2008)
  24. Angermann H, Korte L, Rappich J, Conrad E, Sieber I, Schmidt M, Hubener K, Hauschild J, Thin Solid Films, 516(20), 6775 (2008)
  25. Van Cleef MWM, Rath JK, Rubinelli FA, Van der Werf CHM, Schropp REI, Van der Weg WF, J. Appl. Phys., 82, 6089 (1997)
  26. Taguchi M, Kawamoto K, Tsuge S, Baba T, Sakata H, Morizane M, Uchihashi K, Nakamura N, Kiyama S, Oota O, Progr. Photovolt. Res. Appl., 8(5), 503 (2000)
  27. Jensen N, Hausner RM, Bergmann RB, Werner JH, Rau U, Progr. Photovolt. Res. Appl., 10(1), 1 (2002)
  28. Beckers I, Nickel NH, Pilz W, Fuhs W, J. Non-Cryst. Solid., 227-230, 847 (1998)
  29. Kaneko T, Wakagi M, Onisawa K, Minemura T, Appl. Phys. Lett., 64(14), 1865 (1994)
  30. Meier J, Torres P, Platz R, Dubail S, Kroll U, Anna Selvan JA, Pellaton Vaucher N, Hof C, Fischer D, Keppner H, Shah A, Ufert KD, Giannoules P, Koehler J, Mater. Res. Soc. Symp. Proc., 420, 3 (1996)
  31. Finger F, Hapke P, Luysberg M, Carius R, Wagner H, Scheib M, Appl. Phys. Lett., 65(20), 2588 (1994)
  32. Hwang HL, Wang KC, Hsu KC, Yew TR, Loferski JJ, Progr. Photovolt. Res. Appl., 4, 165 (1996)
  33. Molenbroek EC, Mahan AH, Gallagher A, J. Appl. Phys., 82(4), 1909 (1997)
  34. Matsumura H, Jpn. J. Appl. Phys., 37(6A), 3175 (1998)
  35. Cifre J, Bertomeu J, Puigdollers J, Polo MC, Andreu J, Lloret A, Appl. Phys. Mater. Sci. Process., 59, 645 (1994)
  36. Wiesmann H, Ghosh AK, McMahon T, Strongin M, J. Appl. Phys., 50, 3752 (1979)
  37. Sinton RA, Cuevas A, Appl. Phys. Lett., 69(17), 2510 (1996)
  38. Kim YS, Drowly CI, Hu C, in Proceedings of the 14th IEEE Photovoltaic Specialist Conference (San Diego, CA, January 1980) p. 560. (1980)
  39. Martin I, Vetter M, Orpella A, Puigdollers J, Cuevas A, Alcubilla R, Appl. Phys. Lett., 79, 2199 (2001)