Journal of Industrial and Engineering Chemistry, Vol.21, 542-551, January, 2015
Effect of recycle ratio on the cost of natural gas processing in countercurrent hollow fiber membrane system
E-mail:
The separation of the countercurrent hollow fiber membrane module has been characterized adapting a ‘‘Multi-component Progressive Cell Balance’’ approach and incorporated within the Aspen HYSYS process simulator. The simulated data is found to exhibit good accordance with published experimental result. The study of the double staged membrane module with permeate recycle system, which was proposed to be the optimum configuration in previous works, has been extended by altering the recycle ratio of the permeate stream to study the process economics. Parameter sensitivities of typical membrane selectivity and CO2 feed concentration adapted in industrial application have been conducted. The study of high CO2 content is highlighted since it represents the future expansion of natural gas extraction considering that most of the remaining fields contain high concentration. It is observed that the recycle ratio is an important parameter to be considered in the industrial design process since it affects the gas processing cost significantly. Increasing the recycle ratio is proposed to increase the membrane area and compressor power while improving the hydrocarbon recovery, with substantial impact observed at low selectivity membrane and high CO2 feed concentration. A tradeoff must be determined among these parameters for determination of the optimal recycle ratio configuration.
- Baker RW, Membrane Technology and Application, 2nd ed., John Wiley & Sons, Chichester, 2004.
- Baker RW, Lokhandwala K, Ind. Eng. Chem. Res., 47(7), 2109 (2008)
- Jung HJ, Han SH, Lee YM, Yeo YK, Korean J. Chem. Eng., 28(7), 1497 (2011)
- Freemantle M, Chem. Eng. News, 83(40), 49 (2005)
- Davis RA, Chem. Eng. Technol., 25(7), 717 (2002)
- Chen H, Jiang GL, Xu RX, J. Membr. Sci., 95(1), 11 (1994)
- Pettersen T, Lien KM, Chem. Eng., 18(5), 427 (1999)
- Makaruk A, Harasek M, J. Membr. Sci., 344(1-2), 258 (2009)
- Marriott J, Sorensen E, Chem. Eng. Sci., 58(22), 4975 (2003)
- Chowdhury MHM, Feng XS, Douglas P, Croiset E, Chem. Eng. Technol., 28(7), 773 (2005)
- Pan CY, AIChE J., 32(12), 2020 (1986)
- Arpornwichanop A, Koomsup K, Assabumrungrat S, J. Ind. Eng. Chem., 14(6), 796 (2008)
- Ahmad F, Lau KK, Shariff AM, Murshid G, Comput. Chem. Eng., 36, 119 (2012)
- Ahmad F, Lau KK, Shariff AM, Yeong YF, J. Membr. Sci., 430(1), 44 (2013)
- Thundyil MJ, Koros WJ, J. Membr. Sci., 125(2), 275 (1997)
- Coker DT, Freeman BD, Fleming GK, AIChE J., 44(6), 1289 (1998)
- Amooghin AE, Shehni PM, Ghadimi A, Sadrzadeh M, Mohammadi T, J. Ind. Eng. Chem., 19(3), 870 (2013)
- Nosratinia F, Ghadiri M, Ghahremani H, J. Ind. Eng. Chem., http://dx.doi.org/10.1016/j.jiec.2013.10.065 (2013)
- Ahmad AL, Lau KK, Ind. Eng. Chem. Res., 46(4), 1316 (2007)
- Rautenbach R, Knauf R, Struck A, Vier J, Chem. Eng. Technol., 19(5), 391 (1996)
- Sahu JN, Rama Krishna Chava VS, Hussain S, Patwardhan AV, Meikap BC, J. Ind. Eng. Chem., 16(4), 577 (2010)
- Ho WSW, Sirkar KK, Membrane Handbook, 1st ed., Springer Science and Business, New York, 1992.
- Hussain A, Hagg MB, J. Membr. Sci., 359(1-2), 140 (2010)
- Qi RH, Henson MA, J. Membr. Sci., 148(1), 71 (1998)
- Babcock RE, Spillman RW, Goddin CS, Cooley TE, Energy Prog., 8(3), 135 (1988)
- Datta AK, Sen PK, J. Membr. Sci., 283(1-2), 291 (2006)
- Hao J, Rice PA, Stern SA, J. Membr. Sci., 320(1-2), 108 (2008)
- Santoso A, Yu CC, Ward JD, Ind. Eng. Chem. Res., 51(29), 9790 (2012)
- Kundu PK, Chakma A, Feng X, Can. J. Chem. Eng., 91(6), 1 (2012)
- PETTERSEN T, LIEN KM, Gas Sep. Purif., 9(3), 151 (1995)
- Rautenbach R, Albrecht R, Membrane Processes, John Wiley & Sons, New York, 1989, pp. 434.
- Soni V, Abildskov J, Jonsson G, Gani R, Comput. Chem. Eng., 33(3), 659 (2009)
- Rautenbach R, Process design and optimization, in: Porter MC (Ed.), Handbook of Industrial Membrane Technology, Noyes Publications, Park Ridge, New Jersey, 1990.
- Graham T, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 32, 399 (1866)
- Barrer RM, Barrie JA, Raman NK, Polymer, 595 (1962)
- Reid R, Prausnitz JM, Sherwood TK, The Properties of Gases and Liquids, McGraw-Hill, New York, 1977.
- ASPEN HYSYS, Aspen Hysys Customization Guide, Aspen Technology Inc., Burlington, 2010.
- Stookey DJ, Gas separation membrane technology, Membrane Technology in the Chemical Industry, vol. 5, Wiley-VCH, New York, 2001p. 95.
- Teplyakov V, Sostina E, Beckman I, Netrusov A, World J. Microbiol. Biotechnol., 12(5), 477 (1996)
- Hao J, Rice PA, Stem SA, J. Membr. Sci., 209(1), 177 (2002)
- Sada E, Kumuzawam H, Wang JS, Koizumi M, J. Appl. Polym. Sci., 45(12), 2181 (1992)
- Clarizia G, Drioli E, CO2 separation by membranes in natural gas processing, in: Nato Advanced study Institute on Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges and Opportunities, Springer, 2003, p. 286.
- Zhang YT, Dai XG, Xu GH, Zhang L, Zhang HQ, Liu JD, Chen HL, AIChE J., 58(7), 2069 (2012)