화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.16, No.4, 577-586, July, 2010
Optimization of ammonia production from urea in continuous process using ASPEN Plus and computational fluid dynamics study of the reactor used for hydrolysis process
E-mail:
The present study addresses the methods and means to safely produce relatively small amounts (i.e., up to 50 kg/h) of ammonia. The optimization and simulation study conducted for continuous process and effect of operation conditions like reaction temperature, initial feed concentration and pressure on ammonia production carried out using ASPEN Plus. Also, a computational fluid dynamics (CFD) model was proposed to simulate the hydrolysis of urea for synthesis of ammonia. A series of parametric studies to investigate flow rates, thermal boundary conditions and reactor geometry was performed for hydrolysis of urea and the optimized operating conditions and reactor geometry were obtained. Detailed three-dimensional flow, heat and chemistry simulations of ammonia, carbon dioxide and ammonium carbamate. The study demonstrates that simulation is a useful tool for diagnosing hydrolysis reactor mixing pathologies and for identifying practical countermeasures that could improve process performance.
  1. Choi WJ, Min BM, Shon BH, Seo JB, Oh KJ, J. Ind. Eng. Chem., 15(5), 635 (2009)
  2. Lee GW, Shon BH, Yoo JG, Jung JH, Oh KJ, J. Ind. Eng. Chem., 14(4), 457 (2008)
  3. Park YO, Lee KW, Rhee YW, J. Ind. Eng. Chem., 15(1), 36 (2009)
  4. Cooper HBH, Spencer HW, U.S. Patent Application No. US 6,730,280 B2 (2004)
  5. Spencer HW, Peters HJ, U.S. Patent Application No. US 6,436,359 B1 (2002)
  6. Heck RM, Catal. Today, 53(4), 519 (1999)
  7. Nakajima F, Hamada I, Catal. Today, 29(1-4), 109 (1996)
  8. Forzatti P, Catal. Today, 62(1), 51 (2000)
  9. Devadas M, Krocher O, Elsener M, Wokaun A, Soger N, Pfeifer M, Demel Y, Mussmann L, Appl. Catal. B: Environ., 67(3-4), 187 (2006)
  10. Goo JH, Irfan MF, Kim SD, Hong SC, Chemosphere., 67(4), 718 (2007)
  11. Bai H, Biswas P, Keener TC, Ind. Eng. Chem. Res., 33(5), 1231 (1994)
  12. Resnik KP, Yeh JT, Pennline HW, Int. J. Environ. Technol. Manage., 4, 89 (2004)
  13. Jaworek A, Krupa A, Czech T, J. Electrostat., 65, 133 (2007)
  14. Harker JH, Pimparkar PM, J. Inst. Energy., 61(8), 134 (1988)
  15. McLean KJ, Inst. Electr. Eng. Rev., 135(6), 347 (1988)
  16. Castle GSP, IEEE Trans. Ind. App., 16(2), 297 (1980)
  17. Dalmon J, Tidy D, Atmos. Environ., 6, 721 (1972)
  18. Baxter WA, J. Air Pollut. Control Assoc., 18(12), 817 (1968)
  19. Reese JT, Greco J, J. Air Pollut. Control Ass., 18(8), 523 (1968)
  20. Crynack RR, in: Proceedings of the 6th International Conference on Electrostatic Precipitation, Budapest, 394 (1996)
  21. Chang JS, Thompson H, Looy PC, Berezin AA, Zukeran A, Ito T, Jayaram S, Cross JD, in: Proceedings of the 6th International Conference on Electrostatic Precipitation, Budapest, 2 (1996)
  22. Dismukes EB, J. Air Pollut. Control Ass., 25(2), 152 (1975)
  23. Salib R, Keeth R, Presented at the 2003 Mega Symposium (2003)
  24. Spencer HW, Peters J, Fisher J, Presented at the 2001 Mega Symposium (2001)
  25. Bhattacharya S, Peters HJ, Fisher J, Spencer HW, Presented at the 2003 Mega Symposium (2003)
  26. Del Prato TA, Spicer HG, United States Patent Application No. 20,050,260,108 A1 (2005)
  27. Brooks B, Jessup WA, Macarthur BW, U.S. Patent Application No. US 6,887,449 B2 (2005)
  28. Jacob E, Ka¨ fer S, Mu¨ ller W, Lacroix A, Herr A, U.S. Patent Application No. US 6,928,807 B2 (2005)
  29. Young DC, U.S. Patent Application No. US 5,252,308 (1993)
  30. Spokoyny FE, U.S. Patent Application No. US 2006/0147361 A1 (2006)
  31. Glesmann RT, Titus JJ, JR. Walker HG, U.S. Patent Application 2003/0118494 A1 (2003)
  32. Jacob E, Stiermann E, U.S. Patent Application No. 2006/0045835 A1 (2006)
  33. Hofmann L, Rusch K, U.S. Patent Application No. US 6,471,927 B2 (2002)
  34. Wojichowski DL, U.S. Patent Application No. 2003/0211024 A1 (2003)
  35. Harpe TV, Pachaly R, Holfmann JE, U.S. Patent Application No. US 5,240,688 (1993)
  36. Jones DG, U.S. Patent Application No. US 5,827,490 (1998)
  37. Lagana V, S.N. S.p.A., U.S. Patent Application No. US 5,985,224 (1999)
  38. Mahalik KK, Sahu JN, Patwardhan AV, Meikap BC, J. Hazard. Mater., in press, doi:10.1016/j.jhazmat.2009.10.053.
  39. Sahu JN, Gangadharan P, Patwardhan AV, Meikap BC, Ind. Eng. Chem. Res., 48(2), 727 (2009)
  40. Sahu JN, Mahalik K, Patwardhan AV, Meikap BC, Ind. Eng. Chem. Res., 47(14), 4689 (2008)
  41. Sahu JN, Mahalik KK, Patwardhan AV, Meikap BC, J. Hazard. Mater., 164(2-3), 659 (2009)
  42. Sahu JN, Patwardhan AV, Meikap BC, Ind. Eng. Chem. Res., 48(5), 2705 (2009)
  43. Sahu JN, Patwardhan AV, Meikap BC, Asia-Pacific J. Chem. Eng., 4, 462 (2009)
  44. Sahu JN, Patwardhan AV, Meikap BC, Asia-Pacific J. Chem. Eng., in press, doi:10.1002/apj.362.
  45. Schell LP, U.S. Patent Application No. US 4,087,513 (1978)
  46. Rahimpour MR, Chem. Eng. Process., 43(10), 1299 (2004)
  47. Claudel B, Brousse E, Shehadeh G, Thermochim. Acta., 102, 357 (1986)
  48. Isla AM, Irazoqui AH, Genoud MC, Ind. Eng. Chem. Res., 32, 2662 (1993)
  49. Boonthamtirawuti O, Kiatkittipong W, Arpornwichanop A, Praserthdam P, Assabumrungrat S, J. Ind. Eng. Chem., 15(4), 451 (2009)
  50. Arpornwichanop A, Koomsup K, Assabumrungrat S, J. Ind. Eng. Chem., 14(6), 796 (2008)
  51. Sotudeh-Gharebaagh R, Legros R, Chaouki J, Paris J, Fuel, 77(4), 327 (1998)
  52. Hou WF, Su HY, Hu YY, Chu J, Chin. J. Chem. Eng., 14(5), 584 (2006)
  53. Geuzebroek FH, Schneiders LHJM, Kraaijveld GJC, Feron PHM, Energy, 29(9-10), 1241 (2004)
  54. Rudniak L, Machniewski PM, Milewska A, Molga E, Chem. Eng. Sci., 59(22-23), 5233 (2004)
  55. Yapici H, Basturk G, Comput. Chem. Eng., 28(11), 2233 (2004)
  56. Magnico P, Fongarland P, Chem. Eng. Sci., 61(4), 1217 (2006)
  57. Sripriya R, Kaulaskar MD, Chakraborty S, Meikap BC, Chem. Eng. Sci., 62(22), 6391 (2007)