화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.21, 1112-1118, January, 2015
Polyaniline supported nanocomposite cation exchanger: Synthesis, characterization and applications for the efficient removal of Pb2+ ion from aqueous medium
E-mail:
Polyaniline Sn(IV) tungstomolybdate nanocomposite (PSTM) was synthesized by sol-gel method. The physico-chemical properties of PSTM were studied using FTIR, TGA, XRD, SEM, and TEM. The material was successfully used for the removal of Pb2+. Batch experiments were performed as a function of various experimental parameters such as effect of pH (2-8), contact time (5-60 min), initial Pb2+ concentration (10-30 mg L-1) and temperature (20-50 ℃). The removal rate of Pb2+ using PSTM was fast and equilibrium established within 50 min. Kinetic studies showed better applicability for pseudo-firstorder model. The values of thermodynamic parameters (△G°, △H° and △S°) were also computed.
  1. Naushad M, Chem. Eng. J., 235, 100 (2014)
  2. Naushad M, Al-Othman ZA, Islam M, Int. J. Environ. Sci. Technol., 10, 567 (2013)
  3. Awual MR, Ismael M, Yaita T, El-Safty SA, Shiwaku H, Okamoto Y, Suzuki S, Chem. Eng. J., 222, 67 (2013)
  4. Naushad M, Inamuddin, Rangreez TA, Al-Othman ZA, J. Electroanal. Chem., 713, 125 (2014)
  5. Awual MR, Rahman IMM, Yaita T, Khaleque MA, Ferdows M, Chem. Eng. J., 236, 100 (2014)
  6. AlOthman ZA, Alam MM, Naushad M, J. Ind. Eng. Chem., 19(3), 956 (2013)
  7. Awual MR, Yaita T, El-Safty SA, Shiwaku H, Suzuki S, Okamoto Y, Chem. Eng. J., 221, 322 (2013)
  8. Naushad M, Al-Othman ZA, Khan MR, Talanta, 115, 15 (2013)
  9. Ghasemi M, Naushad M, Ghasemi N, Khosravi-fard Y, J. Ind. Eng. Chem., 20(2), 454 (2014)
  10. Vatutsina OM, Soldatov VS, Sokolova VI, Johann J, Bissen M, Weissenbacher A, React. Funct. Polym., 67(3), 184 (2007)
  11. Mohammad A, Inamuddin, Amin A, Naushad M, Eldesoky GE, J. Therm. Anal. Calorim., 111, 831 (2013)
  12. Nabi SA, Bushra R, Al-Othman ZA, Naushad M, Sep. Sci. Technol., 46(5), 847 (2011)
  13. Kong JJ, Yue QY, Sun SL, Gao BY, Kan YJ, Li Q, Wang Y, Chem. Eng. J., 241, 393 (2014)
  14. MacDiarmid AG, Angew. Chem.-Int. Edit., 40, 2581 (2001)
  15. Tan S, Belanger D, J. Phys. Chem. B, 109(49), 23480 (2005)
  16. Tan S, Viau V, Cugnod D, Belanger D, Electrochem. Solid State Lett., 5, 55 (2002)
  17. Bladergroen BJ, Linkov VM, Sep. Purif. Technol., 25(1-3), 347 (2001)
  18. Sharma G, Pathania D, Naushad M, Kothiyal NC, Chem. Eng. J., 251, 413 (2014)
  19. Rao CNR, Chemical Application of Infrared Spectroscopy, Academic Press, New York, 1963p. 355.
  20. Lin CW, Hwang BJ, Lee CR, Mater. Chem. Phys., 58, 114 (1999)
  21. Choudhury A, Sens. Actuators B-Chem., 138, 318 (2009)
  22. Silverstein RM, Bassler GC, Morrill TC, Spectrometric Identification of Organic Compounds, 4th ed., John Wiley and Sons, New York, 1981p. 111 (Chapter 3).
  23. Socrates G, Infrared Characteristic Group Frequencies, Wiley, NJ, 1980p. 145.
  24. Duval C, Inorganic Thermogravimetric Analysis, Elsevier, Amsterdam, 1963p. 315.
  25. Nabi SA, Naushad M, Bushra R, Chem. Eng. J., 152(1), 80 (2009)
  26. Lagergren S, Handlingar Band, 24, 1 (1898)
  27. Ho YS, McKay G, Chem. Eng. J., 70(2), 115 (1998)
  28. Langmuir I, J. Am. Chem. Soc., 38, 2221 (1916)
  29. Hall KR, Eagleton LC, Acrivos A, Vermeulen T, I&EC Fundam., 5, 212 (1966)