화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.11, No.4, 312-318, April, 2001
Nb함량에 따른 Cu-Nb나노복합재료의 기계적.전기적 특성
Mechanical and Electrical Properties of Heavily Drawn Cu- Nb Nanocomposites with Various Nb contents
초록
다발체 형성과 인발 공정으로 제조된 Cu-Nb 필라멘트 미세복합재료의 기계적 전기적 특성에 대하여 연구하였다. Nb의 함량이 증가함에 따라 강도는 점차 증가하였으나 연성은 Nb의 함량에 무관하였다. 293K와 75K에서의 항복강도의 비율은 Cu-Nb 미세복합재료의 Young의 계수 비율과 비슷하게 관찰되었다. 이러한 사실은 주로 장범위 방해물(athermal obstacles)들이 Cu-Nb 마세복합재료의 강도에 영향을 미친다는 것을 의미한다. 파면 조직관찰 결과는 Cu-Nb 미세복합재료는 Nb의 함량에 판관계없이 연성파괴의 특성을 나타내었으며, 부전선재 (subelematal wires)사이의 계면을 따라 발생하는 2차크랙 (secondary crack) 의 양은 Nb 함량이 증가함에 따라 증가하였다. 전기 전도도와 비저항비 ( ρ 293k /rho 75k )는 Nb 함량이 증가할수록 감소하였다. 이와 같은 Nb함량에 따른 전기전도도와 비저항비의 감소는 계면산란의 기여도가 증가하였기 때문이다.
The mechanical and electrical properties of Cu-Nb filamentary nanocomposite fabricated by the bundling and drawing process were examined. The strength increased gradually with increasing Nb content while the ductility was insensitive to Nb content. The ratio of yield stresses at 293K and 75K are found to be 치ose to that of Young's moduli in various Cu-Nb nanocomposites, suggesting that athermal obstacles primarily control the strength. The fracture morphologies show ductile fractures irrespective of Nb contents. Secondary cracking along the interfaces between subelemental wires was occasionally observed and the frequency of secondary cracking increased with increasing Nb content. The conductivity and the resistivity ratio decreased with increasing Nb content. The decrease of the conductivity and the resistivity ratio( ρ 293k / \{rho}_{75k} ) can be explained by the increasing contribution of interface scattering.
  1. Verhoeven JD, Chumbley LS, Laabs FC, Spitzig WA, Acta Metall. Mater., 39, 2825 (1991)
  2. Funkenbusch PD, Courtney TH, Scripta Metall., 23, 1719 (1989)
  3. Courtney TH, in Metal Matrix Composites: Processing and Interfaces, edited by Everett RK, Arsenault RJ, Academic Press, San Diego, U. S. A., 1991, p101 (1991)
  4. Trybus CL, Spitzig WA, Acta Metall., 37, 1971 (1989)
  5. Spitzig WA, Trybus CL, Verhoeven JD, in Metal Matrix Composites: Mechanisms and Properties, edited by Everett RK, Arsenault RJ, Academic press, San Diego, U. S. A., 1991, pl51 (1991)
  6. Funkenbusch PD, Courtney TH, Scripta Metall. Mater., 24, 1175 (1990)
  7. Biselli C, Morris DG, Acta Metall. Mater., 42, 163 (1994)
  8. Biselli C, Morris DG, Acta metall. Mater., 44, 493 (1996)
  9. Hangen U, Raabe D, Acta Metall. Mater., 43, 4075 (1995)
  10. Hong SI, Hill MA, Acta Metall Mater., 46, 4111 (1998)
  11. Hong SI, Hill MA, Mater. Sci. Eng. A, 281, 189 (2000)
  12. Hong SI, Scripta Mater., 39, 1685 (1998)
  13. Spitzig WA, Laabs FC, Downing HL, Renaud CV, Materials. Manufacturing Processes, 7, 1 (1992)
  14. Bevk J, Harbison JP, Bell JL, J. Appl. Phys., 49, 6031 (1978)
  15. Spitzig WA, Downing HL, Laabs FC, Gibson ED, Verhoeven JD, Metll. Trans., 24A, 7 (1993)
  16. Spitzig WA, Pelton AR, Laabs FC, Acta Metall., 35, 2427 (1987)
  17. Hong SI, Hill MA, Scripta Mater., 42, 737 (2000)
  18. Verhoeven JD, Dowing HL, Chumbley LS, Gibson ED, J. Appl. Phys, 65, 1293 (1989)
  19. Hong SI, Hill MA, Mater. Sci. Eng. A, 264, 151 (1999)
  20. Karasek KR, Bevkm J, J. Appl. Phys., 52, 1370 (1981)
  21. Trybus CL, Chumbly LS, Spitzig WA, Verhoeven JD, Ultramicroscopy, 22, 315 (1989)
  22. Frommeyer G, Wassermann G, Phys. Stat. Sol. A, 27, 99 (1975)
  23. Hong SI, J. Mater. Res., 15, 1889 (2000)