화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.4, 609-616, April, 2015
Pressure drop and thermal performance of CuO/ethylene glycol (60%)-water (40%) nanofluid in car radiator
E-mail:
We investigated the role of nanofluid in a special car radiator and the effect of its different volume concentrations on pressure drop and friction factor of fluid flow. A mixture of 60/40 ratio of ethylene glycol (EG) and distilled water was used as the host fluid and CuO nanoparticles were dispersed well to make stable nanofluids. The influence of nanofluid concentrations on pressure drop was evaluated in the radiator at three different inlet fluid temperatures (35, 44, 54 ℃). The results demonstrated that the presence of nanoparticles caused an increase in nanofluid pressure drop, which was intensified by increasing nanoparticle concentration as well as decreasing temperature of inlet fluid. A new empirical equation for prediction of nanofluid pressure drop through the radiator was developed as well. Also, with increasing the flow rate, the performance index increased and indicated that application of nanofluid in higher flow rate was affordable.
  1. Choi SUS, ASME FED 231/MD, 66, 99 (1995)
  2. Peyghambarzadeh SM, Hashemabadi SH, Hoseini SM, SeifiJamnani M, Int. Commun. Heat Mass, 38, 1283 (2011)
  3. Hojjat M, Etemad SG, Bagheri R, Korean J. Chem. Eng., 27(5), 1391 (2010)
  4. Heris SZ, Etemad SG, Esfahany MN, Int. Commun. Heat Mass, 33, 529 (2006)
  5. Murshed SMS, Leong KC, Yang C, Nguyen N, Int. J. Nanoscience, 7, 325 (2008)
  6. Kahani M, Heris SZ, Mousavi SM, J. Dispersion Sci. Technol., 34, 1704 (2013)
  7. Meibodi ME, Sefti MV, Rashidi AM, Amrollahi A, Tabasi M, Kalal HS, Int. Commun. Heat Mass, 37, 319 (2010)
  8. Hashemi SM, Akhavan-Behabadi MA, Int. Commun. Heat Mass., 39, 144 (2012)
  9. Chun BH, Kang HU, Kim SH, Korean J. Chem. Eng., 25(5), 966 (2008)
  10. Asadabadi MR, Abolghasemi H, Maragheh MG, Nasab PD, Korean J. Chem. Eng., 30(3), 733 (2013)
  11. Nasiri M, Etemad SG, Bagheri R, Korean J. Chem. Eng., 28(12), 2230 (2011)
  12. Kulkarni DP, Vajjha RS, Das DK, Oliva D, Appl. Therm. Eng., 25, 1774 (2008)
  13. Leong KY, Saidur R, Kazi SN, Mamun AH, Appl. Therm. Eng., 30, 2685 (2010)
  14. Teng TP, Hung YH, Jwo CS, Chen CC, Jeng LY, Particuology, 9, 486 (2011)
  15. Das SK, Putra N, Roetzel W, Int. J. Heat Mass Transf., 46(5), 851 (2003)
  16. Rao Y, Particuology, 8, 549 (2010)
  17. Tseng WJ, Lin KC, Mater. Sci. Eng., 355, 186 (2003)
  18. Rea U, McKrell T, Hu LW, Buongiorno J, Int. J. Heat Mass Transf., 52(7-8), 2042 (2009)
  19. Mukesh Kumar PC, Kumar J, Suresh S, J. Mech. Sci. Technol., 27, 239 (2013)
  20. Duangthongsuk W, Wongwises S, Int. J. Heat Mass Transf., 52(7-8), 2059 (2009)
  21. Lee J, Mudawar I, Int. J. Heat Mass Transf., 50(3-4), 452 (2007)
  22. Pantzali MN, Kanaris AG, Antoniadis KD, Mouza AA, Paras SV, Int. J. Heat Fluid Flow, 30, 691 (2009)
  23. Boudouh M, Gualous HL, Labachelerie MD, Appl. Therm. Eng., 30, 2619 (2010)
  24. Fotukian SM, Esfahany MN, Int. Commun. Heat Mass, 37, 214 (2010)
  25. He YR, Jin Y, Chen HS, Ding YL, Cang DQ, Lu HL, Int. J. Heat Mass Transf., 50(11-12), 2272 (2007)
  26. Ko GH, Heo K, Lee K, Kim DS, Kim C, Sohn Y, Choi M, Int. J. Heat Mass Transf., 50(23-24), 4749 (2007)
  27. Sun TF, Teja AS, J. Chem. Eng. Data, 48(1), 198 (2003)
  28. Pak BC, Cho YI, Exp. Heat Transf., 11(2), 151 (1998)
  29. Drew DA, Passman SL, Theory of multi component fluids, Springer, Berlin (1999). (1999)
  30. Sharma KV, Sundar LS, Sarma PK, Int. Commun. Heat Mass, 36, 503 (2009)
  31. Xuan Y, Li Q, J. Heat Transf. -Trans. ASME, 125, 151 (2003)
  32. Shokrgozar M, Heris SZ, Pourfarhang S, Shanbedi M, Noie SH, J. Dispersion Sci. Technol., 35, 677 (2014)
  33. Brognaux LJ, Webb RL, Chamra LM, Chung BY, Int. J. Heat Mass Transf., 40(18), 4345 (1997)
  34. Kahani M, Heris SZ, Mousavi SM, Powder Technol., 246, 82 (2013)