화학공학소재연구정보센터
Macromolecular Research, Vol.23, No.4, 325-332, April, 2015
Steady-state relaxation kinetics observed on fluoropolymers modified by ambient air plasma treatment
E-mail:
Fluoropolymers were treated by an ambient air plasma at 18.7 watt of RF power, 1.0 torr of vacuum pressure, and 0.5-2.0 min of exposure time. The surface wettability and composition were characterized by contact angle measurements and X-ray photoelectron spectroscopy, respectively. The plasma-modified fluorinated surfaces exhibited two different relaxation kinetics based on contact angle (θ A ) changes of water: i) an increase of cosθ A for fully fluorinated (perfluorinated) polymers with nonpolarity, ii) a decay of cosθ A for partially fluorinated polymers with polarity. A steady-state relaxation model was successfully applied to two different contact angle changes on the plasma-modified fluorinated surfaces. The initial polar fraction, f 0, was fitted as 0.03-0.2 for fully fluorinated polymers and 0.5-0.7 for partially fluorinated polymers, respectively. After the plasma treatment, the fully fluorinated polymers exhibited the relative increase of final polar fraction to initial one (i.e., f ∞/f 0=1.2-2.4), but partially fluorinated polymers exhibited the relative decrease of final polar fraction to initial one (i.e., f ∞/f 0=0.7-0.8). The continuous decrease of water contact angles on plasma-modified perfluorinated surfaces might be attributed to the further interactions of generated polar groups with atmospheric environment, while the increase of water contact angles on partially fluorinated surfaces are mainly attributed to the recovery of pristine surface by chain relaxation mechanism.
  1. Lee S, Transient Sorption and Permeation in Fluoropolymers. Ph.D. Dissertation, The Ohio State University, Columbus (1995)
  2. Scheirs J, Modern Fluoropolymers: High Performance Polymers for Diverse Applications. John Wiley & Sons Ltd., Baffins Lane, Chichester (1997)
  3. Lee S, Knaebel KS, J. Appl. Polym. Sci., 64(3), 455 (1997)
  4. Garbassi F, Morra M, Occhiello E, Polymer Surfaces: From Physics to Technology. Wiley, Chichester (1994)
  5. Tsuruta T, Hayashi T, Kataoka K, Ishihara K, Kimura Y, Biomedical Applications of Polymeric Materials. CRC, oca Raton (1993)
  6. Kinloch AJ, Adhesion and Adhesives. Chapman and Hall, New York (1987)
  7. Hougham G, Cassidy PE, Johns K, Davidson T, Fluoropolymers. Plenum, New York (1999)
  8. Chen JR, Wakida T, J. Appl. Polym. Sci., 63(13), 1733 (1997)
  9. Griesser HJ, Johnson G, Steele JG, Polym. Mater. Sci. Eng., 62, 828 (1990)
  10. Lee S, Park JS, Lee TR, Langmuir, 24(9), 4817 (2008)
  11. Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P, Biomacromolecules, 10(9), 2351 (2009)
  12. Liston EM, Martinu L, Wertheimer MR, J. Adhes. Sci. Technol., 7, 1091 (1993)
  13. Inagaki N, Plasma Surface Modification and Plasma Polymerization. Technomic Publishing Company, Lancaster (1996)
  14. Park H, Lee KY, Lee SJ, Park KE, Park WH, Macromol. Res., 15(3), 238 (2007)
  15. Han GJ, Kim JH, Kim CK, Chung SN, Chun BH, Cho BH, Macromol. Res., 21(10), 1118 (2013)
  16. Ratner BD, Biosens. Bioelectron., 10, 797 (1995)
  17. Morent R, Geyter ND, Desmet T, Dubruel P, Plasma Process. Polym., 8, 171 (2011)
  18. Hoffman AS, Macromol. Symp., 101, 443 (1996)
  19. Zhu Y, Zhang Z, Macromol. Res., 22(12), 1275 (2014)
  20. Andrade JD, Surfaces and Interfacial Aspects of Biomedical Polymers. Plenum Press, New York (1985)
  21. Mansfield KF, Theodorou DN, Macromolecules, 24, 6283 (1991)
  22. Ruckenstein E, Gourisankar SV, J. Colloid Interface Sci., 107, 488 (1985)
  23. Andrade JD, Chen WY, Surf. Interface Anal., 8, 253 (1986)
  24. Chung JS, Kim BG, Sohn EH, Lee JC, Macromolecules, 43(24), 10481 (2010)
  25. Garbassi FM, Occhiello ME, Polymer Surfaces: From Physics to Technology. Wiley, Chichester (1994)
  26. Baszkin A, Ter-Minassian-Saraga L, Polymer, 15, 759 (1974)
  27. Yasuda H, Sharma AK, Yasuda T, J. Polym. Sci. Polym. Phys. Ed., 19, 1285 (1981)
  28. Yasuda T, Miyama M, Yasuda H, Langmuir, 8, 1425 (1992)
  29. Xie X, Gengenbach TR, Griesser HJ, J. Adhes. Sci. Technol., 6, 1411 (1992)
  30. Lee S, Park JS, Lee TR, B. Korean Chem. Soc., 32, 41 (2011)
  31. Lee S, Knaebel KS, J. Appl. Polym. Sci., 64(3), 455 (1997)
  32. Lee S, Knaebel KS, J. Appl. Polym. Sci., 64(3), 477 (1997)
  33. Lee SW, Park JS, Lee TR, B. Korean Chem. Soc., 32, 41 (2011)
  34. Golub MA, Lopata ES, Finney LS, Langmuir, 10(10), 3629 (1994)
  35. Ryan ME, Badyal JP, Macromolecules, 28(5), 1377 (1995)
  36. Tudos F, Iring M, Acta Polym., 39, 19 (1988)
  37. Gengenbach TR, Xie X, Chatelier RC, Griesser HJ, in Plasma Surface Modification of Polymers: Relevance to Adhesion, Strobel M, Lyons CS, Mittal KL, Eds., VSP, Utrecht, The Netherlands (1994)
  38. Lock EH, Petrovykh DY, Mack P, Carney T, White RG, Walton SG, Fernsler RF, Langmuir, 26(11), 8857 (2010)
  39. Hyun J, Polymer, 42(15), 6473 (2001)
  40. Banik I, Kim KS, Yun YI, Kim DH, Ryu CM, Park CS, Sur GS, Park CE, Polymer, 44(4), 1163 (2003)
  41. Wilson DJ, Williams RL, Pond RC, Surf. Interface Anal., 31, 385 (2001)
  42. Xie X, Genenbach TR, Griesser HJ, Contact Angle, Wettability and Adhesion: Festschrift in Honor of Professor Robert J. Good. VSP International Science Publishers, Amsterdam (1993)
  43. Wilson DJ, Williams RL, Pond RC, Surf. Interface Anal., 31, 397 (2001)
  44. Hwang YJ, Fiber and Polymer Science. North Carolina State University, Raleigh (2003)
  45. Johnson RE, Dettre RH, J. Phys. Chem., 68, 1744 (1964)
  46. Extrand CW, Langmuir, 19(9), 3793 (2003)
  47. Holly FJ, Refojo MF, J. Biomed. Mater. Res., 9, 315 (1975)
  48. Everhart DS, Reilley CN, Surf. Interface Anal., 3, 126 (1981)
  49. Cassie ABD, Baxter S, Trans. Faraday Soc., 40, 546 (1944)
  50. Israelachvili JN, Gee ML, Langmuir, 5, 288 (1989)
  51. Griesser HJ, Da Y, Hughes AE, Gengenbach TR, Mau AWH, Langmuir, 7, 2484 (1991)
  52. Chatelier RC, Xie XM, Gengenbach TR, Griesser HJ, Langmuir, 11(7), 2576 (1995)