화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.53, No.3, 276-281, June, 2015
Ti-PCS 혼합용액의 전기방사를 통해 제조된 TiO2-SiO2 나노복합 섬유
TiO2-SiO2 Nanocomposite Fibers Prepared by Electrospinning of Ti-PCS Mixed Solution
E-mail:,
초록
TiO2-SiO2 나노복합소재는 자체가 화학적으로 안정할 뿐만 아니라 광학적, 열적 특성이 매우 우수하여 광화학센서, 촉매 등 다양한 분야에 적용되고 있다. 이러한 구조를 구현하는 방법으로 티타늄이 첨가된 폴리카보실란(PCS) 혼합용 액을 전기방사한 후 이를 적절한 산화분위기에서 열처리하여 부직포상의 TiO2-SiO2 나노복합섬유를 만들 수 있는데, 이는 기존의 졸겔공정에 의해 제조되는 섬유보다 더 쉽고 안정적인 방법이다. 공정 중 방사된 섬유를 산화분위기에서 1200 °C 이상까지 열처리하게 되면 크리스토발라이트 기지조직 내에서 아나타제 나노결정상이 매우 균일하게 형성되었다. 또한, 열처리 후 섬유의 표면과 단면은 매우 치밀하고 매끈하였으며 10~20nm 크기의 아나타제 결정입자들이 내부에 균 일하게 분포하였다.
Nanostructured TiO2-SiO2 materials have widely been used as anti-reflecting coating, optical-chemical sensors and catalysts because of their superior optical and thermal properties as well as chemical durability. Web type SiO2 microfibers with nano-crystalline TiO2 were prepared by electrospinning of Ti-PCS mixed solution and oxidation controlled heat-treatment, rather simple than sol-gel process. Nano-crystalline anatase phase were formed for the heattreatment up to 1200 °C and they were finely dispersed in the amorphous SiO2 matrix.
  1. Riedel R, Mera G, Hauser R, Klonczynski A, Jap. J. Ceram. Soc., 114(6), 425 (2003)
  2. Shin DG, Lee YJ, Kim BI, Kim SR, Kwon WT, Kim Y, Ceramic Korea, 301(26), 87 (2013)
  3. Riu DH, Shin DG, Park EB, Cho KY, Huh SH, Ceramist, 12(1), 71 (2010)
  4. Ishikawa T, Adv. Polym. Sci., 178, 109 (2005)
  5. Shin DG, Riu DH, Kim Y, Park HS, Kim HE, J. Korea Ceram. Soc., 42(8), 593 (2005)
  6. Shin DG, Kong EB, Cho KY, Kwon WT, Kim Y, Kim SR, Hong JS, Riu DH, J. Kor. Ceram. Soc., 50(4), 301 (2013)
  7. Cao F, Li XD, Peng P, Feng CX, Wang J, Kim DP, J. Mater. Chem., 12, 606 (2002)
  8. Shin DG, Cho KY, Jin EJ, Kim Y, Kim SR, Kwon WT, Lee YJ, Hong JS, Riu DH, J. Ceram. Process. Res., 14(4), 463 (2013)
  9. Ishikawa T, J. Appl. Ceram. Technol., 1(1), 49 (2004)
  10. Jung JA, Kwak DH, Oh DW, Park DM, Yang OB, Korean Chem. Eng. Res., 50(1), 11 (2012)
  11. Hashimoto K, Irie H, Fujishima A, Jap. J. Appl. Phys., 44(12), 8269 (2005)
  12. http://cdn.intechopen.com/pdfs-wm/8645.pdf.
  13. Hyun DH, Lim TH, Lee SW, J. Korean Ind. Eng. Chem., 19(5), 554 (2008)
  14. Ya J, An L, Liu Z, Lei E, Zhao W, Zhao D, Liu C, Korean J. Chem. Eng., 29(6), 731 (2012)
  15. Li YZ, Kim SJ, J. Phys. Chem. B, 109(25), 12309 (2005)
  16. Shin DG, Kong EB, Riu DH, Kim Y, Park HS, Kim HE, J. Kor. Ceram. Soc., 44(7), 1 (2007)
  17. Shin DG, Riu DH, Kim HE, J. Ceram. Process. Res., 9(2), 209 (2008)
  18. Shawon J, Sung CM, J. Mater. Sci., 39(14), 4605 (2004)
  19. Lee KH, Kim HY, La YM, Lee DR, Sung NH, J. Polym. Sci. B: Polym. Phys., 40(19), 2259 (2002)
  20. Hsu CM, Shivkumar S, Macromol. Mater. Eng., 289, 334 (2004)
  21. Shin DG, Cho KY, Kim Y, Kwon WT, Kim SR, Lee YJ, Riu DH, Adv. Appl. Ceram., 113(6), 341 (2014)
  22. Bouillon E, Langlais E, Pailler R, Naslain R, Curege F, Huong PV, Sarthou JC, Delpuech A, Laffon C, Lagarde P, Monthioux M, Oberlin A, J. Mater. Sci., 26(5), 1333 (1991)
  23. Gupta SM, Tripathi M, Phy. Chem., 56(16), 1639 (2011)
  24. Nuansing W, Ninmuang S, Jarernboon W, Maensiri S, Seraphin S, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 131, 147 (2006)
  25. Park SH, Kim C, Yang KS, Synth. Met., 143, 175 (2004)