화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.53, No.3, 333-338, June, 2015
재생반응 조건이 CO2 건식 K-계열 흡수제의 흡수능력에 미치는 영향
Effects of Regeneration Conditions on Sorption Capacity of CO2 Dry Potassium Sorbent During Carbonation
E-mail:,
초록
본 연구에서는 재생가스조성에 따른 건식 흡수제의 재생률, CO2 흡수능 그리고 응집 특성에 관한 연구를 실시하였다. 실험은 내경 0.05 m, 높이 0.8 m이며 석영으로 제작된 회분식 기포 유동층 반응기에서 수행되었으며 흡수제는 연속공정의 흡수반응기 후단에서 채취한 입자를 사용하였다. 반응성에 관한 연구는 재생반응 유동화 기체의 조성을 CO2, H2O, N2의 농도를 다양하게 변화시키며 수행하였다. 실험결과 재생온도가 증가함에 따라 흡수반응 동안의 흡수능이 증가하는 경향을 나타내었으며 재생기체에 포함된 수분의 함량이 증가함에 따라 흡수능이 다소 감소하는 경향을 나타내었다. 재생반응기체로 N2 100%를 사용한 경우 흡수반응 동안의 흡수능이 가장 높게 나타났으며, (H2O+N2)를 사용한 경우, CO2 100%를 사용한 경우, (H2O+CO2)를 사용한 경우 순으로 흡수능이 감소하는 경향을 나타내었다. 또한, 응집특성에 관한 연구는 흡수제의 입자크기 변화와 흡수반응기체에 포함된 수분의 농도가 응집에 미치는 영향을 살펴보았다. 실험결과 수분함량이 높고 입자크기가 작을수록 응집입자가 많이 생성되는 것으로 나타났다.
In this study, we investigated carbonation-regeneration and agglomeration characteristics of dry sorbents. Experiment has been proceeded in the batch-type reactor, which is made of quartz: 0.05 m of I.D and 0.8 m in height. The sorbents that is collected at the cyclone of the carbonation reactor of continuous process were used in this study. The reactivity was studied at the various concentrations of water vapor, N2 and CO2 in the fluidizing gas at regeneration reaction. As a result, the reactivity increased as the regeneration temperature increased, the reactivity decreased as the concentration of water vapor increased. The absorption capacity showed the highest value in case of using N2 100% as regeneration gas. And decreased in order of H2O+N2, CO2 100% and H2O+CO2. The agglomeration characteristics were investigated according to the particle sizes and concentrations of water vapor at carbonation reaction. As a result, the particle with smaller size and higher concentration of water vapor showed the higher agglomeration characteristic.
  1. Wuebbles DJ, Jain AK, Fuel Process. Technol., 71(1-3), 99 (2001)
  2. Mavroudi M, Kaldis SP, Sakellaropoulos GP, Fuel, 82(15-17), 2153 (2003)
  3. Zhao CW, Chen XP, Zhao CS, Energy Fuels, 23, 4683 (2009)
  4. Metz B, Davidson O, de Coninck H, Loos M, Meyer L, “IPCC Special Report on Carbon Dioxide Capture and Storage,” New York(2005). (2005)
  5. Hoffman JS, Pennline HW, “Investgation of CO2 Capture Using Regenerable Sorbents,” The Proceedings of 17th Annual International Pittsburgh Coal Conference(2000). (2000)
  6. Yi CK, Hong SW, Jo SH, Son JE, Choi JH, Korean Chem. Eng. Res., 43(2), 294 (2005)
  7. Yi CK, “Advances of Carbon Capture Technology,” Climate Change Technology Research(2009). (2009)
  8. Liang Y, Harrison DP, Gupta RP, Green DA, McMichael WJ, Energy Fuels, 18(2), 569 (2004)
  9. Seo Y, Moon YS, Jo SH, Ryu CK, Yi CK, Korean Chem. Eng. Res., 43(4), 537 (2005)
  10. Park KW, Park YS, Park YC, Jo SH, Yi CK, Korean Chem. Eng. Res., 47(3), 349 (2009)
  11. Kim KC, Kim KY, Park YC, Jo SH, Ryu HJ, Yi CK, Korean Chem. Eng. Res., 48(4), 499 (2010)
  12. Kim KC, Park YC, Jo SH, Yi CK, Korean J. Chem. Eng., 28(10), 1986 (2011)
  13. Lee DY, Kim KC, Park YC, Han MH, Yi CK, Korean Chem. Eng. Res., 50(4), 654 (2012)
  14. Yasyerli S, Dogu G, Ar I, Dogu T, Chem. Eng. Commun., 190(5), 1055 (2003)
  15. Ramachandran PA, Kulkarni BD, Ind. Eng. Chem. Process Des. Dev., 19(4), 717 (1980)
  16. Seo Y, Jo SH, Ryu HJ, Bae DH, Ryu CK, Yi CK, Korean J. Chem. Eng., 24(3), 457 (2007)