화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.27, 182-191, July, 2015
Numerical simulation of pitch-water slurry gasification in both downdraft single-nozzle and opposed multi-nozzle entrained-flow gasifiers: A comparative study
E-mail:
Analogous to the coal-water slurry (CWS) gasification technology, the pitch-water slurry (PWS) gasification technology was proposed to gasify pitch with high softening point from the deasphalting unit. The PWS gasification behavior in both downdraft single-nozzle (DSB) and opposed multi-nozzle (OMB) entrained-flow gasifiers were predicted by a three-dimensional numerical model based on Eulerian-Lagrangian method. The flow, temperature, and species mole fraction distributions indicated that PWS was a good feedstock for gasification. The contributions of different competing reactions to the oxygen and fixed carbon consumption were quantitatively analyzed to compare the gasification performances between DSB and OMB gasifiers.
  1. Castaneda LC, Munoz JAD, Ancheyta J, Fuel, 100, 110 (2012)
  2. Cao X, Pet. Process. Petrochem., 40, 1 (2009)
  3. Furimsky E, Ind. Eng. Chem. Res., 48(6), 2752 (2009)
  4. Xu Y, Sino-Global Energy, 15, 92 (2010)
  5. Tajima H, Kawakami H, Mashino Z, Hayami S, Ohzeki O, US4537600, 1985.
  6. Bando S, Takinami T, Inomata M, US6117305, 2000.
  7. Zhao L, Wang H, Hua Q, Li B, Li Y, Wang J, Iron Steel, 33, 62 (1998)
  8. Zhao S, Xu C, Wang R, Xu Z, Sun X, Chung KH, US7597794, 2009.
  9. Liu X, Study on The Pitch-Water Slurry Prepared by Powdered Asphalts with High Softening Point, (Master Thesis), China University of Petroleum, Beijing, 2009.
  10. Sun ZH, Dai ZH, Zhou ZJ, Guo QH, Yu GS, Ind. Eng. Chem. Res., 51(6), 2560 (2012)
  11. Wu Y, Zhang J, Smith PJ, Zhang H, Reid C, Lv J, Yue G, Energy Fuels, 24, 1156 (2010)
  12. Chen C, Horio M, Kojima T, Fuel, 80, 1513 (2001)
  13. Zhuang YQ, Chen XM, Luo ZH, Xiao J, Comput. Chem. Eng., 60, 1 (2014)
  14. Ku XK, Li T, Lovas T, Chem. Eng. Sci., 122, 270 (2015)
  15. Wu CN, Cheng Y, Ding YL, Jin Y, Chem. Eng. Sci., 65(1), 542 (2010)
  16. Ranz WE, Marshall WR, Chem. Eng. Prog., 48, 141 (1952)
  17. Ranz WE, Marshall WR, Chem. Eng. Prog., 48, 173 (1952)
  18. Kuo KKY, Principles of Combustion, John Wiley and Sons, New York, NY, 1986.
  19. Gong JS, Fu WB, Zhong BJ, Fuel, 82(1), 49 (2003)
  20. Harris DJ, Smith IW, Symp. (Int.) Combust., 23, 1185 (1991)
  21. Magnussen BF, Hjertager BH, Symp. (Int.) Combust., 16, 719 (1977)
  22. Westbrook CK, Dryer FL, Combust. Sci. Technol., 27, 31 (1981)
  23. Jones WP, Lindstedt RP, Combust. Flame, 73, 233 (1988)
  24. Bustamante F, Enick RM, Killmeyer RP, Howard BH, Rothenberger KS, Cugini AV, Morreale BD, Ciocco MV, AIChE J., 51(5), 1440 (2005)
  25. Watanabe H, Otaka M, Hara S, Ashizawa M, Kidoguchi K, Inumaru J, ASME Conference Proceedings, Phoenix, (2002), p. 667.
  26. Ashizawa M, Hara S, Kidoguchi K, Inumaru J, Energy, 30(11-12), 2194 (2005)