화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.8, 1477-1485, August, 2015
Performance simulations of MEA/NH3 based large-scale CO2 capture in packed columns under different flue gas parameters
E-mail:
Based on the rate-based process simulation, performances of MEA and NH3 based large-scale CO2 capture in packed columns under different flue gas parameters were investigated. Simulation results show that the CO2 regeneration energy for the MEA based process is lower than that for the NH3 based process, which is mainly because the flow rate of the MEA solution is significantly lower than that of the aqueous ammonia. The MEA leakage concentration is far lower than the NH3 leakage concentration, and this indicates that the NH3 abatement system should be added for dealing with the NH3 slip in the NH3 based CO2 capture process. With the flow rate of the flue gas increasing, the liquid gas ratios for both processes decrease, which gives rise to the decrease of the CO2 removal efficiencies for the two processes. Since the liquid gas ratios are very high, the temperature of the flue gas has little effects on the MEA and NH3 based CO2 capture processes. The comparative studies on the effects of the flue gas parameters can provide technical guidance for the pretreatment of the flue gas before CO2 capture.
  1. Zhao BT, Su YX, Peng YC, Int. J. Greenh. Gas Control, 17, 481 (2013)
  2. Razi N, Svendsen HF, Bolland O, Int. J. Greenh. Gas Control, 19, 331 (2013)
  3. Park SY, Yi KB, Ko CH, Park JH, Kim JN, Hong WH, Energy Fuels, 24, 3704 (2010)
  4. Huang B, Xu SS, Gao SW, Liu LB, Tao JY, Niu HW, Cai M, Cheng JA, Appl. Energy, 87(11), 3347 (2010)
  5. Galindo P, Schaffer A, Brechtel K, Unterberger S, Scheffknecht G, Fuel, 101, 2 (2012)
  6. Zeng Q, Guo YC, Niu ZQ, Lin WY, Ind. Eng. Chem. Res., 50(17), 10168 (2011)
  7. Ahn CK, Lee HW, Chang YS, Han K, Kim JY, Rhee CH, Chun HD, Lee MW, Park JM, Int. J. Greenh. Gas Control, 5, 1606 (2011)
  8. Darde V, van Well WJM, Fosboel PL, Stenby EH, Thomsen K, Int. J. Greenh. Gas Control, 5, 1149 (2011)
  9. Yeh JT, Resnik KP, Rygle K, Pennline HW, Fuel Process. Technol., 86(14-15), 1533 (2005)
  10. Choi BG, Kim GH, Yi KB, Kim JN, Hong WH, Korean J. Chem. Eng., 29(4), 478 (2012)
  11. Han K, Ahn CK, Lee MS, Rhee CH, Kim JY, Chun HD, Int. J. Greenh. Gas Control, 14, 270 (2013)
  12. AspenTech, Aspen Plus document version V7.3, AspenTech, Burlington, Massachusetts (2011).
  13. Duan LQ, Yang Y, Zhang SH, Yang YP, J. N. Chin. Electr. Power Univ., 39(1), 7 (2012)
  14. Zhang MK, Guo YC, Int. J. Greenh. Gas Control, 16, 61 (2013)
  15. Yu H, Li LC, Morgan S, Allport A, Cottrell A, Mcgregor J, Wardhaugh L, Feron P, In: Chemeca 2012, Wellington, 1097 (2012).
  16. Zhang Y, Chen H, Chen CC, Plaza JM, Dugas R, Rochelle GT, Ind. Eng. Chem. Res., 48(20), 9233 (2009)
  17. Ghaemi A, Shahhosseini S, Maragheh MG, Chem. Eng. J., 149(1-3), 110 (2009)
  18. Puxty G, Rowland R, Attalla M, Chem. Eng. Sci., 65(2), 915 (2010)
  19. Dave N, Do T, Puxty G, Rowland R, Feron PHM, Attalla MI, Energy Procedia, 1, 949 (2009)
  20. Hsu CH, Chu H, Cho CM, J. Air Waste Manage. Assoc., 53, 246 (2003)
  21. Yeh AC, Bai H, Sci. Total Environ., 228, 121 (1999)
  22. Niu ZQ, Guo YC, Lin WY, J. Chem. Eng. Chin. Univ., 24(3), 514 (2010)
  23. Pellegrini G, Strube R, Manfrida G, Energy, 35(2), 851 (2010)
  24. Ma SC, Wang MX, Sun YX, Cui JW, Chen WZ, J. Chin. Soc. Power Eng., 32(1), 52 (2012)
  25. Rivera-Tinoco R, Bouallou C, J. Clean Prod., 18, 875 (2010)
  26. Zhang MK, Guo YC, Appl. Energy, 111, 142 (2013)
  27. Niu ZQ, Guo YC, Lin WY, Proc. CSEE, 30(32), 41 (2010)
  28. Ma SC, Sun YX, Zhao Y, Fang WW, Han J, Liang PZ, Acta Chim. Sinica, 69(12), 1469 (2011)
  29. Van Wagener DH, Rochelle GT, Chem. Eng. Res. Des., 89(9A), 1639 (2011)
  30. Zeng XZ, Chen CH, Gao BC, Environ. Prot. Chem. Ind., 20(6), 12 (2000)
  31. Mathias PM, Reddy S, O’Connell JP, Int. J. Greenh. Gas Control, 4, 174 (2010)
  32. Zhang MK, Guo YC, Int. J. Greenh. Gas Control, 29, 22 (2014)
  33. Chen E, Carbon dioxide absorption into piperazine promoted potassium carbonate using structured packing, Ph. D. Thesis, University of Texas at Austin, Austin, Texas (2012).
  34. Chilton TH, Colburn AP, Ind. Eng. Chem. Res., 26, 1183 (1934)
  35. Bravo JL, Rocha JA, Fair JR, Hydrocarb. Process., 64, 91 (1985)
  36. Niu ZQ, Guo YC, Zeng Q, Lin WY, Fuel Process. Technol., 108, 154 (2013)
  37. Pinsent BR, Pearson L, Roughton FJW, J. Chem. Soc.-Faraday Trans., 52, 1512 (1956)
  38. Hikita H, Asai S, Ishikawa H, Honda M, Chem. Eng. J., 13, 7 (1977)
  39. Lee JI, Otto FD, Mather AE, J. Appl. Chem. Biotechnol., 26, 541 (1976)
  40. Jou FY, Mather AE, Otto FD, Can. J. Chem. Eng., 73(1), 140 (1995)
  41. Kurz F, Rumpf B, Maurer G, Fluid Phase Equilib., 104, 261 (1995)
  42. Goppert U, Maurer G, Fluid Phase Equilib., 41, 153 (1988)
  43. Gouedard C, Picq D, Launay F, Carrette PL, Int. J. Greenh. Gas Control., 10, 244 (2012)