화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.25, No.9, 455-461, September, 2015
Synthesis of Nanosized SnS-TiO2 Photocatalysts with Excellent Degradation Effect of TBA under Visible Light Irradiation
E-mail:
SnS-TiO2 nanocomposites are synthesized using simple, cheap, and less toxic SnCl2 as the tin (II) precursor. The prepared nanoparticles are characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectra (DRS). The XRD and TEM results indicate that the prepared product has SnS nanoparticles and a grain diameter of 30 nm. The DRS demonstrate that SnS-TiO2 possesses the absorption profile across the entire visible light region. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and photocatalytic effect increase with the modified SnS. Excellent catalytic degradation of Texbrite BA-L (TBA) solution is observed using the SnS-TiO2 composites under visible light irradiation. It is proposed that both the strong visible light absorption and the multiple exciton excitations contribute to the high visible light photocatalytic activity.
  1. Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY, Appl. Catal. B: Environ., 98(1-2), 27 (2010)
  2. Xu P, Xu T, Lu J, Gao SM, Hosmane NS, Huang BB, Dai Y, Wang YB, Energy Environ. Sci., 3, 1128 (2010)
  3. Bagwasi S, Tian BZ, Zhang JL, Nasir M, Chem. Eng. J., 217, 108 (2013)
  4. Akurati KK, Vital A, Dellemann JP, Michalow K, Graule T, Fetti D, Baiker A, Appl. Catal. B: Environ., 79(1-2), 53 (2008)
  5. Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
  6. Burda C, Lou Y, Chen X, Samia A, Stout J, Gole J, Nano Lett., 3, 1049 (2003)
  7. Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY, Appl. Catal. B: Environ., 98(1-2), 27 (2010)
  8. Jothivel S, Velmurugan R, Selvam K, Krishnakumar B, Swaminathan M, Sep. Purif. Technol., 77(2), 245 (2011)
  9. Tang PS, Chen HF, Caom F, Pan GX, Wang KY, Xu MH, Tong YH, Mater. Lett., 65, 450 (2011)
  10. Meng ZD, Ghosh T, Zhu L, Choi JG, Park CY, Oh WC, J. Mater. Chem., 22, 16127 (2012)
  11. Wang J, Guo YW, Liu B, Jin XD, Liu LJ, Xu R, Kong YM, Wang BX, Ultrason. Sonochem., 18, 177 (2011)
  12. Cheng SY, Chen YQ, He YJ, Chen GN, Mater. Lett., 61, 1408 (2007)
  13. Ramaswamy V, Jagtap NB, Vijayanand S, Bhange DS, Awati PS, Mater. Res. Bull., 43(5), 1145 (2008)
  14. Zhang XW, Zhou MH, Lei LC, Carbon, 43, 1700 (2005)
  15. Mariappan R, Mahalingam T, Ponnuswamy V, Optik, 122, 2216 (2011)
  16. Zhu HL, Yang DR, Ji YJ, Zhang H, Shen XF, J. Mater. Sci., 40(3), 591 (2005)
  17. Ray SC, Karanjai MK, DasGupta D, Thin Solid Films, 350(1-2), 72 (1999)
  18. Ghosh B, Roy R, Chowdhury S, Banerjee P, Das S, Appl. Surf. Sci., 256(13), 4328 (2010)
  19. Meng ZD, Zhu L, Choi JG, Chen ML, Oh WC, J. Mater. Chem., 21, 7596 (2011)
  20. Donohue MD, Aranovich GL, Fluid Phase Equilib., 158, 557 (1999)
  21. Yang C, Wang W, Shan Z, Huang F, J. Solid State Chem., 182, 807 (2009)
  22. Meng ZD, Peng MM, Zhu L, Oh WC, Zhang FJ, Appl. Catal. B: Environ., 113, 141 (2012)
  23. Ning J, Men K, Xiao G, Wang L, Dai Q, Zou B, Liu B, Zou G, Nanoscale, 2, 1699 (2010)
  24. Liu H, Liu Y, Wang Z, He P, Nanotechnology, 21, 105707 (2010)
  25. Liu BS, Zhao XJ, Zhao QN, He X, Feng JY, J. Electron Spectrosc. Relat. Phenom., 148, 158 (2005)