Korean Journal of Chemical Engineering, Vol.33, No.1, 255-259, January, 2016
Hydrogen bond dynamics in liquid water: Ab initio molecular dynamics simulation
E-mail:,
The effect of intermolecular interaction on the distribution of the harmonic vibrational frequencies of water molecules was investigated through ab initio molecular dynamics simulations based on the Born-Oppenheimer approach. For single water, the effect of the dynamics of the oxygen atom in single water and the simulation time step on the frequency distribution were examined. The distributions of the OH stretching and HOH bending vibrational frequencies of liquid water were compared to those of single water. The probability distributions of the change in OH bond length and the lifetime of the dangling OH bond were also obtained. The distribution of the frequencies was strongly affected by the long lifetime of the dangling OH bond, resulting in the formation of hydrogen bonds between water molecules.
Keywords:Ab Initio Molecular Dynamics Simulation;Born-oppenheimer Approach;Water;Hydrogen Bond;Vibrational Frequency
- Hashimoto K, Choi AR, Furutani Y, Jung KH, Kandori H, Biochem., 49, 3343 (2010)
- Haupts U, Tittor J, Oesterhelt D, Annu. Rev. Biophys. Biomol. Struct., 28, 367 (1999)
- Kandori H, Yamazaki Y, Sasaki J, Needleman R, Lanyi JK, Maeda A, J. Am. Chem. Soc., 117(7), 2118 (1995)
- Kandori H, Biochim. Biophys. Acta, 1460, 177 (2000)
- Lanyi JK, J. Struct. Biol., 124(2-3), 164 (1998)
- Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK, J. Mol. Biol., 291, 899 (1999)
- Maeda A, Sasaki J, Yamazaki Y, Needleman R, Lanyi JK, Biochem., 33, 1713 (1994)
- Daniel J, Solomon S, Saunders R, Portman R, Miller D, Madsen W, J. Geophys. Res., 104, 16785 (1999)
- Daniel JS, Solomon S, Kjaergaard HG, Schofield DP, Geophys. Res. Lett., 31, L06118 (2004)
- Hill C, Jones R, J. Geophys. Res., 105, 9421 (2000)
- Huisken F, Kaloudis M, Kulcke A, J. Chem. Phys., 104(1), 17 (1996)
- Kandori H, Shichida Y, J. Am. Chem. Soc., 122(47), 11745 (2000)
- Low GR, Kjaergaard HG, J. Chem. Phys., 110(18), 9104 (1999)
- Ptashnik IV, Smith KM, Shine KP, Newnham DAQ, J. R. Meteorol. Soc., 130, 2391 (2004)
- Schofield DP, Kjaergaard HG, Phys. Chem. Chem. Phys., 5, 3100 (2003)
- Vaida V, Daniel J, Kjaergaard HG, Goss LM, Tuck AFQ, Meteorol. Soc., 127, 1627 (2001)
- Benedict WS, Gailar N, Plyler EK, Chem. Phys. Lett., 24, 1139 (1956)
- Bansil R, Berger T, Toukan MAR, Chen SH, Chem. Phys. Lett., 132, 165 (1986)
- Curtiss LA, Pople JA, J. Mol. Spectrosc., 55, 1 (1975)
- Kim JS, Lee JY, Lee S, Mhin BJ, Kim KS, J. Chem. Phys., 102(1), 310 (1995)
- Kumar N, Neogi S, Kent PRC, Bandura AV, Kubicki JD, Wesolowski DJ, Cole D, Sofo JO, J. Phys. Chem. C, 113, 13732 (2009)
- Oder R, Goring DAI, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 27, 2285 (1971)
- Palese S, Buontempo JT, Schilling L, Lotshaw WT, Tanimura Y, Mukamel S, Miller RJ, J. Phys. Chem., 98(48), 12466 (1994)
- Perera PN, Fega KR, Lawrence C, Tomlinson-Phillips J, Ben-Amotz D, P.N.A.S., 106, 12230 (2009)
- Schofield DP, Lane JR, Kjaergaard HG, J. Phys. Chem. A, 111(4), 567 (2007)
- Silvestrelli PL, Bernasconi M, Parrinello M, Chem. Phys. Lett., 277, 478 (1997)
- Thrane L, Jacobsen RH, Jepsen PU, Keiding SR, Chem. Phys. Lett., 240, 330 (1995)
- Woods KN, Wiedemann H, Chem. Phys. Lett., 393(1-3), 159 (2004)
- VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J, Comput. Phys. Commun., 167, 103 (2005)