Korean Journal of Chemical Engineering, Vol.33, No.1, 271-276, January, 2016
Excess volume and excess enthalpy of binary mixtures composed of 1,2-dichloropropane and 1-alkanol (C5-C8)
E-mail:
The excess molar volumes and excess molar enthalpies at T=298.15 K and atmospheric pressure for the binary systems {CH3CHClCH2Cl (1)+CH3(CH2)n.1OH (2)} (n=5 to 8) have been determined over the whole range of composition from the density and heat flux measurements using a digital vibrating-tube densimeter and an isothermal calorimeter, respectively. The measured excess molar volumes of all binary mixtures showed positive symmetrical trend with values increasing with chain length of 1-alkanol. Similarly, excess enthalpy values of all binary mixtures showed skewed endothermic behavior with values increasing with chain length of 1-alkanol. The maxima of excess molar enthalpy values were observed around x1=0.65 with excess enthalpy value ranging from 1,356.8 J/mol (1-pentanol) to 1,543.4 J/mol (1-octanol). The experimental results of both Hm E and Vm E are fitted to a modified version of Redlich-Kister equation using the Pade approximant to correlate the composition dependence. The experimental Hm E data were also fitted to three local-composition models (Wilson, NRTL, and UNIQUAC). The correlation of excess enthalpy data in these binary systems using UNIQUAC model provides the most appropriate results.
Keywords:Excess Molar Properties (Volumes and Enthalpies);Pade Approximation;Thermodynamic Models;1,2-Dichloropropane;1-Alkanols
- Narendra K, Srinivasu C, Kalpana C, Murthy PN, J. Therm. Anal. Calorim., 107, 25 (2012)
- Rezanova EN, Kammerer K, Lichtenthaler RN, J. Chem. Eng. Data, 45, 124 (2000)
- Mchaweh A, Alsaygh A, Nasrifar K, Moshfeghian M, Fluid Phase Equilib., 224(2), 157 (2004)
- Kim Y, Kim M, Korean Chem. Eng. Res., 42(4), 426 (2004)
- Kim J, Kim M, Korean Chem. Eng. Res., 44(5), 444 (2006)
- Sen D, Kim MG, Thermochim. Acta, 471(1-2), 20 (2008)
- Sen D, Kim MG, Korean J. Chem. Eng., 26(3), 806 (2009)
- Sen D, Kim MG, Fluid Phase Equilib., 280(1-2), 94 (2009)
- Sen D, Kim MG, Fluid Phase Equilib., 285(1-2), 30 (2009)
- Sen D, Kim MG, Fluid Phase Equilib., 303(1), 85 (2011)
- Kim MG, Korean J. Chem. Eng., 29(9), 1253 (2012)
- Kim MG, Korean J. Chem. Eng., 31(2), 315 (2014)
- Morrison RT, Boyd RN, Organic chemistry, 6th Ed., Prentice Hall, NJ (1992).
- Maryott AA, Smith ER, Table of Dielectric Constants of Pure Liquids, National Bureau of Standards Circular 514, Washington D.C. (1951).
- Riddick JA, Bunger WB, Sakano TK (Eds.), Organic Solvents, vol. 2, 4th Ed., Wiley-Interscience, New York (1986).
- Redlich O, Kister AT, Ind. Eng. Chem., 40, 345 (1948)
- Baker GA, Graves-Morris P, Pade Approximants, Cambridge Univ. Press, New York (1996).
- Wilson GM, J. Am. Chem. Soc., 86, 127 (1964)
- Renon H, Prausnitz JM, AIChE J., 14, 135 (1968)
- Abrams DS, Prausnitz JM, AIChE J., 21, 116 (1975)
- O’Neil MJ, Heckelman PE, Koch CB, Roman KJ (Eds.), Merck Index, 14th Ed., Merck Research Laboratories, NJ (2006).
- Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gas and Liquids, 5th Ed., McGraw-Hill, New York (2000).
- Bevington P, Data Reduction and Error Analysis for the Physical Sciences, 3rd Ed., McGraw-Hill, New York (2003).
- Ott JB, Sipowska JT, J. Chem. Eng. Data, 41(5), 987 (1996)