Korean Chemical Engineering Research, Vol.54, No.1, 135-139, February, 2016
식물세포배양으로부터 파클리탁셀 회수를 위한 무기염이 첨가된 액-액 추출
Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Cultures by Adding Inorganic Salts
E-mail:
초록
본 연구에서는 무기염을 첨가한 액-액 추출에 의해 식물세포인 바이오매스로부터 파클리탁셀 회수 방법을 획기적으로 개선하고자 하였다. 다양한 무기염(NaCl, KCl, K2HPO4, NaH2PO4, NaH2PO4·2H2O)을 이용하여 추출효율을 조사한 결과, NaCl에서 가장 낮은 분배계수(0.053)로 가장 높은 파클리탁셀 수율(~96%)을 얻을 수 있었다. NaCl을 이용한 액-액 추출에서 최적의 NaCl/용매 비와 메틸렌 클로라이드/메탄올 비는 각각 1%(w/v)와 26%(v/v)이었다. 또한 최적의 NaCl/용매 비와 메틸렌 클로라이드/메탄올 비에서 파클리탁셀 함량에 따른 영향을 조사한 결과, 순수 파클리탁셀 함량 0.066% (w/v)에서 가장 낮은 분배계수(0.053)로 가장 높은 수율(~96%)을 얻을 수 있었다. 기존 액-액 추출의 경우 총 3회의 추출로 파클리탁셀을 95% 정도 회수 가능한 반면 무기염을 이용한 방법의 경우 단 1회 추출로 대부분의 파클리탁셀을 회수(~96%) 가능하였다.
We developed a liquid-liquid extraction method using an inorganic salt to dramatically improve the recovery efficiency of the anticancer agent paclitaxel from plant cell cultures. As a result of liquid-liquid extraction using a diverse types of inorganic salt (NaCl, KCl, K2HPO4, NaH2PO4, NaH2PO4·2H2O), NaCl gave the highest yield (~96%) and lowest partition coefficient (0.053) of paclitaxel. The optimal NaCl/solvent ratio, methylene chloride/MeOH ratio, and pure paclitaxel content for liquid-liquid extraction using NaCl were 1% (w/v), 26% (v/v), and 0.066% (w/v), respectively. Under the optimal conditions developed in the present method, most of the paclitaxel (~96%) was recovered from biomass by a single extraction step. In addition, this method facilitated 3-fold higher recovery efficiency of paclitaxel in a shorter extraction number than the conventional liquid-liquid extraction method.
- Kim JH, Biotechnol. Bioeng., 21, 1 (2006)
- Kim GJ, Kim JH, Process Biochem., 50, 989 (2015)
- Hsiao JR, Leu SF, Huang BM, J. Oral Pathol. Med., 38, 188 (2009)
- Rao K, Hanuman J, Alvarez C, Stoy M, Juchum J, Davies R, Baxley R, Pharm. Res., 12, 1003 (1995)
- Choi HK, Son JS, Na GH, Hong SS, Park YS, Song JY, J. Plant Biotechnol., 29, 59 (2002)
- Baloglu E, Kingston DGI, J. Nat. Prod., 62, 1068 (1999)
- Lee CG, Kim JH, Korean Chem. Eng. Res., 52(4), 497 (2014)
- Kim JH, Lim CB, Kang IS, Hong SS, Lee HS, Biotechnol. Bioeng., 15, 337 (2000)
- Kim GJ, Kim JH, Korean J. Chem. Eng., 32(6), 1023 (2015)
- Pyo SH, Song BK, Ju CH, Han BH, Choi HJ, Process Biochem., 40, 1113 (2005)
- Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Process Biochem., 37, 679 (2002)
- Kim JH, Hong SS, Biotechnol. Bioeng., 15, 346 (2000)
- Hyun JE, Kim JH, Biotechnol. Bioeng., 23, 281 (2008)
- Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39, 1985 (2004)
- Kim JH, KSBB J., 24, 212 (2009)
- Wu JW, Chen HC, Ding WH, J. Chromatogr. A, 1302, 20 (2013)
- Hsieh HK, Chen CL, Ding WH, Anal. Methods, 5, 7001 (2013)
- Saien J, Asadabadi S, J. Taiwan Inst. Chem. Eng., 41, 295 (2010)
- Gao M, Wang H, Ma M, Zhang Y, Yin X, Dahlgren RA, Du D, Wang X, Food Chem., 175, 181 (2015)
- Choi HK, Adams TL, Stahlhut RW, Kim SI, Yun JH, Song BK, Kim JH, Song JS, Hong SS, Lee HS, “Method for Mass Production of Taxol by Semi-continuous - 49 - culture with Taxus chinensis Cell Culture,” US. Patent No. 5,871,979 (1999).
- Rezaeepour R, Heydari R, Ismaili A, Anal. Methods, 7, 3253 (2015)
- Lee JY, Kim JH, Sep. Purif. Technol., 103, 8 (2013)