Korean Journal of Chemical Engineering, Vol.33, No.4, 1318-1324, April, 2016
Artificial neural networks as classification and diagnostic tools for lymph node-negative breast cancers
E-mail:
Artificial neural networks (ANNs) can be used to develop a technique to classify lymph node negative breast cancer that is prone to distant metastases based on gene expression signatures. The neural network used is a multilayered feed forward network that employs back propagation algorithm. Once trained with DNA microarraybased gene expression profiles of genes that were predictive of distant metastasis recurrence of lymph node negative breast cancer, the ANNs became capable of correctly classifying all samples and recognizing the genes most appropriate to the classification. To test the ability of the trained ANN models in recognizing lymph node negative breast cancer, we analyzed additional idle samples that were not used beforehand for the training procedure and obtained the correctly classified result in the validation set. For more substantial result, bootstrapping of training and testing dataset was performed as external validation. This study illustrates the potential application of ANN for breast tumor diagnosis and the identification of candidate targets in patients for therapy.
Keywords:Artificial Neural Network;Breast Cancer Diagnosis;DNA Microarray-based Gene Expression Profile;Classification
- Wang Y, Klijn JGM, Zhang Y, Sieuwerts AM, Lancet, 365, 671 (2005)
- Venkateswarlu C, Kiran K, Eswari JS, Appl. Artif. Intell., 26, 903 (2012)
- Eswari JS, Anand M, Venkateswarlu C, J. Chem. Technol. Biotechnol., 88(2), 271 (2013)
- Eswari JS, Venkateswarlu C, Int. J. Pharm., 4, 465 (2012)
- Eswari JS, Venkateswarlu C, Chem. Eng. Commun., In Press (2015).
- Eswari JS, Venkateswarlu C, Environ. Eng. Sci., 30, 527 (2013)
- Kim YS, Hwang SJ, Oh JM, Whang GD, Yoo CK, Korean J. Chem. Eng., 26, 969 (2010)
- Banerjee N, Park J, Korean J. Chem. Eng., 32(7), 1207 (2015)
- Ilbay Z, Sahin S, Buyukkabasakal K, Korean J. Chem. Eng., 31(9), 1661 (2014)
- Zarenezhad B, Aminian A, Korean J. Chem. Eng., 28(5), 1286 (2011)
- Molashahi M, Hashemipour H, Korean J. Chem. Eng., 29(5), 601 (2012)
- Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Nat. Med., 7, 673 (2001)
- Chang YT, Huang CS, Yao CT, Su SL, World J. Gastroenterol., 20, 14463 (2014)
- Chang YT, Yao CT, Su SL, Chou YC, World J. Gastroenterol., 20, 17476 (2014)
- Lin C, Chu CM, Lin J, Yang HY, Su SL, PLOS One., 10 (2015)
- Chu CM, Chen CJ, Chan DC, Wu HS, World J. Surg. Oncol., 12, 80 (2014)
- Lai CH, Chu NF, Chang CW, Wang SL, PLOS One., 8, 12 (2013)
- Van’t Veer LJ, Dai H, Van de Vijver MJ, He YD, Nature, 415, 530 (2002)
- Dor AB, Bruhn L, Friedman N, Nachman I, J. Comp. Biol., 7, 559 (2000)
- Ramaswamy S, Ross KN, Lander ES, Golub TR, Nat. Genet., 33, 49 (2003)
- Amato F, Lopez A, Pena-Mendez EM, Vahara P, J. Appl. Biomed., 11, 47 (2013)
- Chuang HY, Lee E, Liu YT, Lee D, Ideker T, Mol. Syst. Biol., 3, 140 (2007)
- Peterson LE, Ozen M, Erdem H, Amini A, Gomez L, Nelson CC, IEEE, 1 (2005)
- Lisboa PJG, Neural Netw., 15, 11 (2002)
- Siegelmann HT, Sontag ED, Appl. Math. Lett., 4, 77 (1991)
- Balcazar JL, IEEE, 7141, 14 (1993)
- Chou HL, Yao CT, Su SL, Lee CY, BMC Bioinfo., 14, 100 (2013)