화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.54, No.2, 278-283, April, 2016
고분자물질을 이용한 분별침전 공정에서 파클리탁셀의 입자크기 감소
Decreasing Particle Size of Paclitaxel Using Polymer in Fractional Precipitation Process
E-mail:
초록
원료의약품의 활용도를 향상시키기 위하여 입자 크기의 감소는 매우 중요하다. 본 연구에서는 식물세포 유래 항암물질 파클리탁셀의 입자크기 감소를 위하여 친수성 고분자물질을 첨가하여 분별침전을 수행하였다. 고분자물질이 첨가된 분별침전을 통해 입자크기를 감소시킬 수 있었다. 특히 고분자물질 HPMC 2910을 이용한 분별침전의 경우 침전물 성장을 가장 효과적으로 저해함을 알 수 있었다. 고분자물질 HPMC 2910농도 0.2%에서 가장 작은 입자크기의 침전물을 얻을 수 있었는데, 대조군 대비 ~35% 정도로 입자크기를 감소시킬 수 있었다. 또한 파클리탁셀 침전물의 입자크기는 친수성 고분자물질 첨가에 따른 침전용액의 제타전위 절대값에 반비례함을 알 수 있었다.
In this study, we have for the first time applied fractional precipitation with hydrophilic polymer in order to decrease the particle size of the anticancer agent paclitaxel from plant cell cultures. When compared with the case where no hydrophilic polymer was employed, the addition of hydrophilic polymer in fractional precipitation resulted in a decrease in the size of the paclitaxel precipitate. Among the polymers used, HPMC 2910 was the most effective for inhibition of precipitate growth. A polymer concentration of 0.2% (w/v) obtained the smallest particle size. The particle size was reduced by ~35% compared to control. In addition, the precipitate size was inversely correlated with the absolute value of the zeta potential.
  1. Rowinsky EK, Cazenave LA, Donehower RC, J. Natl. Cancer Inst., 82, 1247 (1990)
  2. Schiff PB, Fant J, Horwitz SB, Nature, 277, 655 (1979)
  3. Kim GJ, Kim JH, Korean J. Chem. Eng., 32(6), 1023 (2015)
  4. Kim JH, Korean J. Biotechnol. Bioeng., 21, 1 (2006)
  5. Hsiao JR, Leu SF, Huang BM, J. Oral Pathol. Med., 38, 188 (2009)
  6. Rao KV, Hanuman JB, Alvarez C, Stoy M, Pharm. Res., 12, 1003 (1995)
  7. Baloglu E, Kingston DG, J. Nat. Prod., 62, 1068 (1999)
  8. Choi HK, Son SJ, Na GH, Hong SS, Park YS, Song JY, Korean J. Plant Biotechnol., 29, 59 (2002)
  9. Georgiev MI, Weber J, Maciuk A, Appl. Microbiol. Biotechnol., 83(5), 809 (2009)
  10. Cho EB, Cho WK, Cha KH, Park JS, Int. J. Pharm., 396, 91 (2010)
  11. Yeo SD, Kim MS, Lee JC, J. Supercrit. Fluids, 25(2), 143 (2003)
  12. Pyo SH, Kim MS, Cho JS, Song BK, Han BH, Choi HJ, J. Chem. Technol. Biotechnol., 79, 1162 (2005)
  13. Prakash K, Jieun R, Kim HM, Kim IS, Kim JT, Kim HI, Cho JM, Yun GA, Lee JH, Asian J. Pharm. Sci., 9, 304 (2014)
  14. Ruala J, Eerikaine H, Kauppinen EI, Int. J. Pharm., 284, 13 (2004)
  15. Chen X, Young TJ, Sarkari M, Williams III RO, Johnston KP, Int. J. Pharm., 242, 3 (2002)
  16. Vehring R, Pharm. Res., 25, 999 (2008)
  17. Weers JG, Tarara TE, Clark AR, Expert Opin. Drug Deliv., 4, 297 (2007)
  18. Kawashima Y, York P, Adv. Drug Deliv. Rev., 60, 297 (2008)
  19. Han MG, Jeon KY, Mun S, Kim JH, Process Biochem., 45, 1368 (2010)
  20. Jeon KY, Kim JH, Process Biochem., 44, 736 (2009)
  21. Jeon SI, Mun S, Kim JH, Process Biochem., 41, 276 (2006)
  22. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Biotechnol. Lett., 22(22), 1753 (2000)
  23. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39, 1985 (2004)
  24. Lee JY, Kim JH, Korean J. Microbiol. Biotechnol., 40, 169 (2012)
  25. Dong Y, Ng WK, Shen S, Kim S, Tan RB, Int. J. Pharm., 375, 84 (2009)
  26. Zhang HX, Wang JX, Zhang ZB, Le Y, Shen ZG, Chen JF, Int. J. Pharm., 374, 106 (2009)
  27. Gamborg OL, Miller RA, Ojima K, Exp. Cell Res., 50, 151 (1968)
  28. Lee CG, Kim JH, Korean Chem. Eng. Res., 52(4), 497 (2014)
  29. Dalvi SV, Dave RN, Ind. Eng. Chem. Res., 48(16), 7581 (2009)
  30. Labouret AD, Thioune O, Fessi H, Devissaguet JP, Puisieux F, Drug Dev. Ind. Pharm., 21, 229 (1995)
  31. Stainmesse S, Orecchioni AM, Nakache E, Puisieux F, Fessi H, Colloid Polym. Sci., 273, 505 (1995)
  32. Thioune O, Fessi H, Devissaguet JP, Puisieux F, Int. J. Pharm., 146, 233 (1997)
  33. Pouretedal HR, Int. Nano Lett., 4, 103 (2014)
  34. Ryu HK, Kim JH, Korean J. Microbiol. Biotechnol., 42, 114 (2014)