Process Biochemistry, Vol.45, No.6, 993-1001, 2010
Degradation of 2,4,6-trinitrotoluene (TNT) by immobilized microorganism-biological filter
The combined process of immobilized microorganism-biological filter was used to degrade TNT in an aqueous solution. The results showed that the process could effectively degrade TNT, which was not detected in the effluent of the system. GC/MS analysis identified 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT), 4-amino-2,6-dinitrotoluene (4-A-2,6-DNT), 2,4-diamino-6-nitrotoluene (2,4-DA-6-NT) and 2,4-diamino-6-nitrotoluene (2,6-DA-4-NT) as the main anaerobic degradation products. In addition, the Haldane model successfully described the anaerobic degradation of TNT with high correlation coefficients (R(2) = 0.9803). As the electron donor, ethanol played a major role in the TNT biodegradation. More than twice the theoretical requirement of ethanol was necessary to achieve a high TNT degradation rate (above 97.5%). Moreover, Environment Scan Electron Microscope (ESEM) analysis revealed that a large number of globular microorganisms were successfully immobilized on the surface of the carrier. Further analysis by Polymerase Chain Reaction (PCR)-Denaturing Gradient Gel Electrophoresis (DGGE) demonstrated that the special bacterial for TNT degradation may have generated during the domestication with TNT for 150 clays. The dominant species for TNT degradation were identified by comparing gene sequences with Genebank. (C) 2010 Elsevier Ltd. All rights reserved.