화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.36, 125-131, April, 2016
Petrochemical-waste-derived high-performance anode material for Li-ion batteries
E-mail:
To end the unsustainable disposal of pyrolysis fuel oil (PFO), which is a type of petrochemical waste, we investigate the use of PFO as a carbon source for soft carbon and evaluate it as an anode material for lithium-ion batteries. This material exhibites a much higher reversible capacity (366.5 mAh g-1) than that of commercial soft carbon (236.4 mAh g-1) and an extremly stable cyclability. The PFO-derived soft carbon retained 99.0% of its initial capacity after 100 cycles, and a rate capability test indicated that it retained a higher capacity at all investigated current densities compared with that of a commercial product. To further improve its lithium storage capacity, the PFO-derived soft carbon was composited with nano silicon. Notably, even after the composite was formed, the high rate capability was maintained. It was demonstrated that petrochemical waste can be converted into high-performance anode material, and this sustainable approach is readily applicable to the commercial production of anode material.
  1. https://www.innopolis.or.kr/attach/filedownloads/do_down/type/N/no/36811.
  2. Tom LC, Patinha DJS, Ferreira R, Garcia H, Pereira CS, Freire CSR, Rebelo LPN, Marrucho IM, ChemSusChem, 7, 110 (2014)
  3. Kontos AG, Likodimos V, Veziri CM, Kouvelos E, Moustakas N, Karanikolos GN, Romanos GE, Falaras P, ChemSusChem, 7, 1696 (2014)
  4. Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu A, Buja LE, Strand WG, Teng H, Science, 307, 1769 (2005)
  5. Varzi A, Ramirez-Castro C, Balducci A, Passerini S, J. Power Sources, 273, 1016 (2015)
  6. Kawaura H, Takamatsu D, Mori S, Orikasa Y, Sugaya H, Murayama H, Nakanishi K, Tanida H, Koyama Y, Arai H, Uchimoto Y, Ogumi Z, J. Power Sources, 245, 816 (2014)
  7. Ko S, Lee SC, Lee CW, Im JS, J. Alloy. Compd., 613, 96 (2014)
  8. Zhou Y, Ko S, Lee CW, Pyo SG, Kim SK, Yoon S, J. Power Sources, 244, 777 (2013)
  9. Choi BG, Yang M, Jung SC, Lee KG, Kim J, Park HS, Park TJ, Lee SB, Han Y, Huh YS, ACS Nano, 7, 2453 (2013)
  10. Zhou Y, Yoon S, Electrochem. Commun., 40, 54 (2014)
  11. Choi BG, Chang S, Lee YB, Bae JS, Kim HJ, Huh YS, Nanoscale, 4, 5924 (2012)
  12. Wang Y, Li H, He P, Hosono E, Zhou H, Nanoscale, 4, 1294 (2010)
  13. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
  14. Kaspar J, Terzioglu C, Ionescu E, Graczyk-Zajac M, Hapis S, Kleebe H, Riedel R, Adv. Funct. Mater., 24, 4097 (2014)
  15. Zickler GA, Smarsly B, Gierlinger N, Peterlik H, Paris O, Carbon, 44, 3239 (2006)
  16. Wang Y, Alsmeyer DC, McCreery RL, Chem. Mater., 2, 557 (1990)
  17. Baddour-Hadjean R, Pereira-Ramos JP, Chem. Rev., 110(3), 1278 (2010)
  18. Ferrari AC, Robertson J, Phys. Rev. B, 61, 14095 (2000)
  19. Kaskhedikar NA, Maier J, Adv. Mater., 21(25-26), 2664 (2009)
  20. Dahn JR, Zheng T, Liu YH, Xue JS, Science, 270(5236), 590 (1995)
  21. Zheng T, Mckinnon WR, Dahn JR, J. Electrochem. Soc., 143(7), 2137 (1996)
  22. Park J, Principles and Applications of Lithium Secondary Batteries, Wiley-VCH, Weinheim, 2012p. 102.
  23. Park M, Zhang XC, Chung MD, Less GB, Sastry AM, J. Power Sources, 195(24), 7904 (2010)
  24. Park M, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J, Nano Lett., 9, 3844 (2009)
  25. Favors Z, Wang W, Bay HH, Mutlu Z, Ahmed K, Liu C, Ozkan M, Ozkan CS, Sci. Rep., 4, 5623 (2014)
  26. Lee SH, Yoon CS, Amine K, Sun YK, J. Power Sources, 234, 201 (2013)
  27. Lin Y, Abel PR, Heller A, Mullins CB, J. Phys. Chem. Lett., 2, 2885 (2011)
  28. Jeong JM, Choi BG, Lee SC, Lee KG, Chang SJ, Han YK, Lee YB, Lee HU, Kwon S, Lee G, Lee CS, Huh YS, Adv. Mater., 25(43), 6250 (2013)