Korean Journal of Materials Research, Vol.9, No.5, 503-508, May, 1999
혼합기체 sputtering법으로 증착된 Cu 확산방지막으로의 Ti-Si-N 박막의 특성연구
A Study of Reactively Sputtered Ti-Si-N Diffusion Barrier for Cu Metallization
초록
본 연구에서는 TiSi2 타켓과 Ar/N2의 혼합기체률 사용하여 rf magnetron sputtering방법으로 증착된 Ti-Si-N 박막의 물리적 성질 및 Cu에 대한 확산 방지막 성절에 대하여 조사하였다. 이 박막의 비저항은 혼합기체내의 질소 기체의 유량이 0%~5%까지 증가함에 따라 358~307941μQ-cm로 증가하였다. TiSixNy 박막의 열처리에 따른 결정화는 1000℃에서 이루어 졌으며, XRD 분석을 통해 Si3N4와 TiN상이 검출되었음을 확인하였다. TiSixNy박막의 Cu에 대한 확산방지 능력은 AES, XRD, Seccoetchlng 에 의한 etch pit으로 조사하였으며 N 함량이 43-45 at% 일 때 가장 우수하였다. TiSixNy두께가 100nm 에서는 900℃까지 10nm 에서는 700℃까지 Cu의 면저항 변화가 관찰되지 않았다. 또한 100nm두께의 T iSixNy박막을 600℃에서 진공 열처리한 박막의 확산방지능력은 혼합기체내의 질소기체 분압 5% 에서 두드러지게 향상되었다. 조성변화를 위한 Ti충의 첨가는 박막의 비저항을 현저히 낮추었으나 확산방지특성은 조금 나빠진 것으로 나타내었다.
We have investigated the physical and diffusion barrier pr때erty of Ti-Si-N film for Cu metallization. The ternary ∞mpound was deposited by using reactive rf magnetron sputtering of a TiSi2 target in an Ar/N2 gas mixture. Resistivities of the films were in range of 358μΩcm to 307941μΩcm, and tended to increase with increasing the N2/Ar flow rate ratio. The crystallization of the Ti-Si-N compound started to occur at 1000℃ with the phases of TiN and Si3N4 identified by using XRD(X-ray Diffractometer). The degree of the crystallization was influenced by the N2/Ar flow ratio. The diffusion barrier property of Ti-Si-N film for Cu metallization was determined by AES, XRD and etch pit by secco etching, revealing the failure temperature of 900℃ in 43~45 at% of nitrogen content. In addition, the very thin ∞mpound (10 nm) with 43~45 at% nitrogen content remained stable up to 700℃. Furthermore, thermal treatment in vacuum at 600℃ improved the barrier property of the Ti-Si-N film deposited at the N2/(Ar+N2) ratio of 0.05.The addition of Ti interlayer between Ti-Si-N films caused the drastic decrease of the resistivity with slight degradation of diffusion barrier properties of the compound.
- Grove AS, "Physics and technology of semiconductor devices," p.40.
- McBrayer JD, "Diffusion of metals in silicon dioxide," DARPA, MDA 901-82-k-0412, 1983.
- Hirabayaslu H, Kaneko H, Hayasaka N, Higuclu M, Mase Y, Oosluma J, in "Extended A ootracts of 42nd Spring Meeting," Tokai University, 1995 (The Japan Society of Appied Physics and Related Societies) p.811.
- Olowolafe JO, Li J, Mayer JW, Appl. Phys. Lett., 58, 469 (1991)
- Arcot B, Murarck SP, Clevenger LA, Hong QZ, Ziegler W, Harper JME, J. Appl. Phys., 76(9), 5161 (1994)
- Guinn KV, Donnelly VM, Gross ME, Baiocclu FA, Petrov I, J. Appl. Phys., 68(10), 5176 (1990)
- Iijima T, Slumooka Y, Minamihaba G, Kawanoue T, Tamura H, VMIC Conference 1996 ISMIC, 106/96/0168 (c).
- Sun X, Reid JS, Kolawa E, Nicolet MA, J. Appl. Phys., 81(2), 656 (1997)
- Kolawa E, Molarius JM, Nieh CW, Nicolet MA, J. Vac. Sci. Technol. A, 8(3), 3006 (1990)
- Hirata A, Hosoya T, Machida K, Takaoka H, Akiya H, J. Electrochem. Soc., 143(11), 3747 (1996)
- Wolf S, Tauger RN, “ Silicon Processing for the VLSI Era," 1, p.553.
- Wolf S, “ Silicon Processing for the VLSI Era," 2, p.147.