화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.5, 503-508, May, 1999
혼합기체 sputtering법으로 증착된 Cu 확산방지막으로의 Ti-Si-N 박막의 특성연구
A Study of Reactively Sputtered Ti-Si-N Diffusion Barrier for Cu Metallization
초록
본 연구에서는 TiSi2 타켓과 Ar/N2의 혼합기체률 사용하여 rf magnetron sputtering방법으로 증착된 Ti-Si-N 박막의 물리적 성질 및 Cu에 대한 확산 방지막 성절에 대하여 조사하였다. 이 박막의 비저항은 혼합기체내의 질소 기체의 유량이 0%~5%까지 증가함에 따라 358~307941μQ-cm로 증가하였다. TiSixNy 박막의 열처리에 따른 결정화는 1000℃에서 이루어 졌으며, XRD 분석을 통해 Si3N4와 TiN상이 검출되었음을 확인하였다. TiSixNy박막의 Cu에 대한 확산방지 능력은 AES, XRD, Seccoetchlng 에 의한 etch pit으로 조사하였으며 N 함량이 43-45 at% 일 때 가장 우수하였다. TiSixNy두께가 100nm 에서는 900℃까지 10nm 에서는 700℃까지 Cu의 면저항 변화가 관찰되지 않았다. 또한 100nm두께의 T iSixNy박막을 600℃에서 진공 열처리한 박막의 확산방지능력은 혼합기체내의 질소기체 분압 5% 에서 두드러지게 향상되었다. 조성변화를 위한 Ti충의 첨가는 박막의 비저항을 현저히 낮추었으나 확산방지특성은 조금 나빠진 것으로 나타내었다.
We have investigated the physical and diffusion barrier pr때erty of Ti-Si-N film for Cu metallization. The ternary ∞mpound was deposited by using reactive rf magnetron sputtering of a TiSi2 target in an Ar/N2 gas mixture. Resistivities of the films were in range of 358μΩcm to 307941μΩcm, and tended to increase with increasing the N2/Ar flow rate ratio. The crystallization of the Ti-Si-N compound started to occur at 1000℃ with the phases of TiN and Si3N4 identified by using XRD(X-ray Diffractometer). The degree of the crystallization was influenced by the N2/Ar flow ratio. The diffusion barrier property of Ti-Si-N film for Cu metallization was determined by AES, XRD and etch pit by secco etching, revealing the failure temperature of 900℃ in 43~45 at% of nitrogen content. In addition, the very thin ∞mpound (10 nm) with 43~45 at% nitrogen content remained stable up to 700℃. Furthermore, thermal treatment in vacuum at 600℃ improved the barrier property of the Ti-Si-N film deposited at the N2/(Ar+N2) ratio of 0.05.The addition of Ti interlayer between Ti-Si-N films caused the drastic decrease of the resistivity with slight degradation of diffusion barrier properties of the compound.
  1. Grove AS, "Physics and technology of semiconductor devices," p.40.
  2. McBrayer JD, "Diffusion of metals in silicon dioxide," DARPA, MDA 901-82-k-0412, 1983.
  3. Hirabayaslu H, Kaneko H, Hayasaka N, Higuclu M, Mase Y, Oosluma J, in "Extended A ootracts of 42nd Spring Meeting," Tokai University, 1995 (The Japan Society of Appied Physics and Related Societies) p.811.
  4. Olowolafe JO, Li J, Mayer JW, Appl. Phys. Lett., 58, 469 (1991)
  5. Arcot B, Murarck SP, Clevenger LA, Hong QZ, Ziegler W, Harper JME, J. Appl. Phys., 76(9), 5161 (1994)
  6. Guinn KV, Donnelly VM, Gross ME, Baiocclu FA, Petrov I, J. Appl. Phys., 68(10), 5176 (1990)
  7. Iijima T, Slumooka Y, Minamihaba G, Kawanoue T, Tamura H, VMIC Conference 1996 ISMIC, 106/96/0168 (c).
  8. Sun X, Reid JS, Kolawa E, Nicolet MA, J. Appl. Phys., 81(2), 656 (1997)
  9. Kolawa E, Molarius JM, Nieh CW, Nicolet MA, J. Vac. Sci. Technol. A, 8(3), 3006 (1990)
  10. Hirata A, Hosoya T, Machida K, Takaoka H, Akiya H, J. Electrochem. Soc., 143(11), 3747 (1996)
  11. Wolf S, Tauger RN, “ Silicon Processing for the VLSI Era," 1, p.553.
  12. Wolf S, “ Silicon Processing for the VLSI Era," 2, p.147.