화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.5, 496-502, May, 1999
Cl2/H2 플라즈마 조건이 n-GaN 식각 특성 및 저저항 접촉 형성에 미치는 영향
Effects of CI2/H2 Plasma Conditions on the etch Properties of n-GaN and ohmic Contact Formation
초록
본 연구에서는 평판형 유도결합 Cl2/H2 플라즈마률 이용하여 n-GaN 식각하였으며 플라즈마 식각조건이 식각특성, 표면 성분, 그리고 저항형 접촉형성에 미치는 영향을 관찰하였다. CI2 플라즈마에 수소를 100% 까지 첨가함에 따라서 GaN 의 식각속도는 GaClx 형성에 필요한 Cl 라디촬양의 감소에 따라 감소하였으며 50Å 이내로 제한척이기는 하나 표면성분비가 Ga- 과잉에서 N- 과잉으로 변화하였다. 또한 GaN 의 Ga과 CI2 플라즈마의 Cl사이의 화학 반응에 의해 형성된 식각부산물은 GaN 식각 반웅증 OES 분석을 이용하여 관찰하였다. n-GaN의 접촉 비저항값은 100% CI2 플라즈마로 식각시 3 x 10- 6 Ωcm2로서 식각을 하지 않은 n-GaN 위에 형성된 접촉 비저항보다 낮은 값을 냐타내였으나 수소 첨가량이 증가함에 따라서 증가하였다.
In this study, n-GaN samples were etched using planar inductively coupled CI2/H2 plasmas and the effects of plasma conditions on the etch properties, surface composition, and ohmic contact formation were investigated as a function of gas combination. As the addition of hydrogen to the Cl2 plasma increased to 100%, GaN etch rates decreased due to the reduction of chlorine radical density. Even though the variation of the surface composition is limited under 50 A, the surface composition was also changed from Ga-rich to N-rich with the increased addition of hydrogen to Cl2. Etch products by the reaction between Ga in GaN and Cl in Clz plasma were investigated using OES an머ysis during the GaN etching. The vaIue of specific resistivity of the contact formed on the n-GaN etched using 100% Cl2 plasma was 3.1 x 10-6 Ωcm2, and which was lower than that formed on the non-etched n-GaN. However, the resistivity was increased with the increased hydrogen percent in CI2/H2.
  1. Zolper JC, Shul RJ, MRS BULLETIN/FEBRUARY p.36 (1997).
  2. Shul RJ, Kilcoyne SP, Crawford MH, Parmeter JE, Vartuli CB, Abernathy CR, Pearton SJ, Appl. Phys. Lett., 66, 1761 (1995)
  3. Vartuli CB, Pearton SJ, Lee JW, Mackenzie JD, Abernathy CR, Shul RJ, J. Vac. Sci. Technol. A, 15, 638 (1996)
  4. Pearton SJ, Vartuli CB, Shul RJ, Zolper JC, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 31, 1 (1995)
  5. Cho H, Hong J, Maeda T, Donovan SM, Abernathy CR, Pearton SJ, Shul RJ, Han J, J. Electron. Mater., 27, 915 (1998)
  6. Smith SA, Wolden CA, Bremser MD, Hanser AD, Davis RF, Lampert WV, Appl. Phys. Lett., 71, 3631 (1997)
  7. Shul RJ, Willison CG, Bridges MM, Han J, Lee JW, Pearton SJ, Abernathy CR, MacKenzie JD, Donovan SM, Zhang L, Lester LF, J. Vac. Sci. Technol. A, 16(3), 1621 (1998)
  8. Kim HS, Lee YJ, Lee YH, Lee JW, You MC, Kim TI, Yeom GY, Mat. Res. Soc. Symp. Proc., 468, 367 (1997)
  9. Ping AT, Adesida I, Khan MA, Appl. Phys. Lett., 67, 1250 (1995)
  10. Adesida I, Ping AT, Youtsey C, Sow T, Khan MA, Olson DT, Kuznia JN, Appl. Phys. Lett., 65, 889 (1994)
  11. Lee WJ, Kim HS, Lee JW, Kim TI, Yeom GY, Jpn. J. Appl. Phys., 37, 7006 (1998)
  12. Saotome K, Matsutani A, Shirasawa T, Mori M, Honda T, Sakaguchl T, Koyama F, Iga K, Mat. Res. Soc. Symp. Proc., 449, 1029 (1997)
  13. Ping AT, Scmitz AC, Adesida I, Khan MA, Chen Q, Yang JW, J. Electron. Mater., 26, 266 (1997)
  14. Pearton SJ, Lee JW, MacKenzie JD, Abernathy CR, Shul RJ, Appl. Phys. Lett., 67, 2329 (1995)
  15. Ogryzlo EA, Ibbotson DE, Flamm DL, Mucha JA, J. Appl. Phys., 67, 3115 (1990)
  16. Donnelly VM, J. Vac. Sci. Technol. A, 14(3), 1076 (1996)
  17. Gillis HP, Choutov DA, Martin KP, Pearton SJ, Abernathy CR, J. Electrochem. Soc., 143(11), L251 (1996)
  18. Hiramatsu K, Matsushima H, Hanai H, Sawaki N, 482, 991 (1997).
  19. Eddy CR, Glembocki LJ, Leonhardt D, Shmanian VA, Holm RT, Holms BD, Butler JE, Pang SW, J. Electron. Mater., 26, 1320 (1997)
  20. Luther BP, Mohney SE, Jackson TN, Khan MA, Chen Q, Yang JW, Appl. Phys. Lett., 70, 57 (1997)