화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.6, 1964-1970, June, 2016
HMF synthesis in aqueous and organic media under ultrasonication, microwave irradiation and conventional heating
E-mail:
5-Hydroxymethyl furfural (HMF) is known as a noteworthy platform in a biorefinery concept. HMF was prepared via fructose dehydration in aqueous and organic media, using three methods, i.e., conventional heating, ultrasonication and microwave irradiation. Water, methyl isobutyl ketone (MIBK), methyl ethyl ketone and ethyl acetate were used as media for HCl-catalyzed synthesis of HMF. FTIR and 1H-NMR spectroscopies were used for analysis. The synthesis yield and selectivity were investigated to optimize variables such as fructose concentration, catalyst dosage, temperature, irradiation power, solvent, and the reaction atmosphere. It was found that the yield in the organic media was superior to that of the aqueous ones. In addition, nitrogen atmosphere favored higher yield than air, due to lack of HMF oxidation. As conclusion, the highest yields of the conventional, ultrasonicated and microwave-assisted reactions were 87, 53, and 38%, respectively. In the reactions ultrasonically promoted, the reaction time scale was highly reduced from hours to minutes. The yield was varied with treatment times, so that ultrasonication was recognized to be the best approach in terms of yield, while the microwave method was the fastest one. Selectivity varied from 60 to 90% depending the reaction media and promotion method.
  1. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499 (2013)
  2. Yi YB, Ha MG, Lee JW, Chung CH, Korean J. Chem. Eng., 30(7), 1429 (2013)
  3. Esther J, Sukla LB, Pradhan N, Panda S, Korean J. Chem. Eng., 32(1), 1 (2015)
  4. Mukherjee A, Dumont MJ, Raghauan V, Biomass Bioenerg., 72, 143 (2015)
  5. Oh YH, Eom IY, Joo JC, Yu JH, Song BK, Lee SH, Hong SH, Park SJ, Korean J. Chem. Eng., 32(10), 1945 (2015)
  6. Gandini A, in: Loos K (Ed.), Biocatalysis in polymer chemistry, Wiley, n.d., pp. 1-34.
  7. Mulder G, J. Prakt. Chem., 21, 203 (1840)
  8. Dull G, Chem Zeit, 19, 1003 (1895)
  9. Kiermayer J, Chem. Appar., 19, 1004 (1895)
  10. Ribeiro DMB, Ritter M, Souza AO, Freitag R, Farias MD, Flores AFC, Souto A, Lencina CL, Pereira CMP, Ultrason. Sonochem., 20, 99 (2013)
  11. Agirrezabal-Telleria I, Gandarias I, Arias PL, Catal. Today, 234, 42 (2014)
  12. Teong SP, Yi G, Zhang Y, Green Chem., 16, 2015 (2014)
  13. Dashtban M, Gilbert A, Fatehi P, RSC Adv., 4, 2037 (2014)
  14. Atanda L, Mukundan S, Shrotri A, Ma Q, Beltramini J, ChemCatChem, 7, 781 (2015)
  15. Jain A, Shore AM, Jonnalagadda SC, Ramanujachary KV, Mugweru A, Appl. Catal. A: Gen., 489, 72 (2015)
  16. Wang T, Nolte MW, Shanks BH, Green Chem., 16, 548 (2014)
  17. Rodrigues FA, Guirardello R, Chem. Eng. J., 37, 475 (2014)
  18. Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ, Bioresour. Technol., 101(16), 6291 (2010)
  19. Liu B, Ren Y, Zhang Z, Green Chem., 17, 1610 (2015)
  20. Ma H, Wang FR, Yu YH, Wang LF, Li XH, Ind. Eng. Chem. Res., 54(10), 2657 (2015)
  21. Zhang M, Tong X, Ma R, Li Y, Catal. Today, 6 (2015)
  22. Noma R, Nakajima K, Kamata K, Kitano M, Hayashi S, Hara M, J. Phys. Chem. C, 119, 17117 (2015)
  23. Kuster BFM, 42, 314 (1990).
  24. Hansen TS, Woodley JM, Riisager A, Carbohydr. Polym., 344, 2568 (2009)
  25. Christian TJ, Manley-Harris M, Field RJ, Parker BA, J. Agric. Food Chem., 48, 1823 (2000)
  26. Kotadia DA, Soni SS, Catal. Sci. Technol., 3, 469 (2013)
  27. Hu L, Zhao G, Tang X, Wu Z, Xu JX, Lin L, Liu SJ, Bioresour. Technol., 148, 501 (2013)
  28. Zhou L, He Y, Ma Z, Liang R, Wu T, Wu Y, Carbohydr. Polym., 117, 694 (2015)
  29. Chun JA, Lee JW, Yi YB, Hong SS, Chung CH, Korean J. Chem. Eng., 27(3), 930 (2010)
  30. Wang S, Du Y, Zhang P, Cheng X, Qu Y, Korean J. Chem. Eng., 31(12), 2286 (2014)
  31. Wang S, Du Y, Zhang W, Cheng X, Wang J, Korean J. Chem. Eng., 31(10), 1786 (2014)
  32. Ramli NAS, Amin NAS, J. Mol. Catal. A-Chem., 407, 113 (2015)
  33. Brown DW, Floyd AJ, Kinsman RG, Ali Y, J. Chem. Technol. Biotechnol., 32, 920 (1982)
  34. Qi X, Guo H, Li L, Smith RL, ChemSusChem, 5, 2215 (2012)
  35. Zhang J, Weitz E, ACS Catal., 2, 1211 (2012)
  36. Lacerda VD, Lopez-Sotelo JB, Correa-Guimaraes A, Hernandez-Navarro S, Sanchez-Bascones M, Navas-Gracia LM, Martin-Ramos P, Perez-Lebena E, Martin-Gil J, Bioresour. Technol., 180, 88 (2015)
  37. Qi X, Watanabe M, Aida T, Smith RL, Green Chem., 11, 1327 (2009)
  38. Guo F, Fang Z, Zhou TJ, Bioresour. Technol., 112, 313 (2012)
  39. Zhou X, Zhang Z, Liu B, Xu Z, Deng K, Carbohydr. Res., 375, 68 (2013)
  40. Saha B, Abu-omar MM, Green Chem., 16, 24 (2014)
  41. Roman-Leshkov Y, Dumesic JA, Top. Catal., 52, 297 (2009)
  42. Lorenz LJ, Modern Methods of Pharmaceutical Analysis, Second Ed., CRC Press, Florida (2000).
  43. Tong X, Li Y, ChemSusChem, 3, 350 (2010)
  44. Jiang N, Qi W, Huang R, Wang M, He Z, J. Chem. Technol. Biotechnol., 89, 56 (2013)
  45. Klinpratoom B, Ontanee A, Ruangviriyachai C, Korean J. Chem. Eng., 32(3), 413 (2015)
  46. Van Dam HE, Starch-Starke, 38, 95 (1986)
  47. Wang F, Wu HZ, Liu CL, Yang RZ, Dong WS, Carbohydr. Res., 368, 78 (2013)
  48. Gollnick K, Griesbeck A, Tetrahedron, 41, 2057 (1985)
  49. Lee GCM, Syage ET, Harcourt D, Holmes JM, Garst ME, J. Org. Chem., 56, 7007 (1991)
  50. Montagnon T, Tofi M, Vassilikogiannakis G, Acc. Chem. Res., 41, 1001 (2008)
  51. Antal MJ, Mok WSL, Richards GN, Carbohydr. Res., 199, 91 (1990)
  52. Li Y, Liu H, Song CH, Gu XM, Li HM, Zhu WS, Yin S, Han CR, Bioresour. Technol., 133, 347 (2013)