Korean Chemical Engineering Research, Vol.54, No.3, 299-304, June, 2016
Nitrate-Citrate 혼합 전구체로부터 ZnO 입자의 합성반응 특성
Synthesis Characteristics of ZnO Powder from Precursors Composed of Nitrate-Citrate Compounds
E-mail:
초록
Nitrate-citrate 혼합 전구체로부터 ZnO 입자 합성을 위한 자체진행 반응(Self-propagating reaction)의 특성을 고찰하였다. 질화물과 Citrate 그룹간의 자체진행 반응을 위해 탄소/질소 성분의 비는 0.7~0.8 수준으로 유지하였으며, 출발물질의 시료를 TGA방법에 의해 열분해하였다. 반응의 후반부인 반응 전환율이 0.5 이상에서 자체진행 반응의 특성을 나타내었으며 시료는 매우 짧은 시간에 많은 열을 방출하며 분해되었다. 반응의 전반부(X<0.5)가 전체반응의 율속단계로 나타났으며, 이 율속단계에서 반응의 특성을 Friedman, Ozawa-Flynn-Wall 그리고 Vyazovkin의 방법들을 사용하여 해석하였다. 율속단계에서 활성화 에너지는 46~130 (kJ/mol)의 범위로 반응 전환율이 증가함에 따라 증가하였으며, 반응차수는 2.9~0.9, 그리고 반응속도의 빈도인자(Frequency factor)는 85~287 (min-1)의 범위에서 승온속도가 증가함에 따라 각각 전자는 감소하고 후자는 증가하였다.
Characteristics of self-propagating reaction for the preparation of ZnO powder from precursors composed of nitrate and citrate compounds were examined. The ratio of C/N was maintained in range of 0.7~0.8 to initiate the selfpropagating reaction between the reducing citrate and oxidizing nitrate groups. The samples were decomposed thermally by using TGA. The sudden decomposition occurred in the range of X > 0.5 in a very short time with a very sharp decrease of mass, indicating that the self-propagating reaction would occur. Friedman, Ozawa-Flynn-Wall and Vyazovkin methods were employed to predict the activation energy, reaction order and frequency factor of the reaction rate in the rate determining step of X < 0.5 range. The activation energy increased with increasing fractional conversion in the range of 46~130 (kJ/min). The reaction order decreased in the range of 2.9~0.9, while the frequency factor increased in the range of 85~278 (min-1), respectively, with increasing the rate of temperature increase.
Keywords:Self-propagating reaction;Activation energy;Reaction order;Frequency factor;ZnO powder;Nitrate-Citrate precursor
- Roy TK, Sanyal D, Bhowmick D, Chakrabarti A, Mater. Sci. Semicond. Process, 16, 332 (2013)
- Lee SH, Yang SW, Lim DH, Yoo DJ, Lee CK, Kang GM, Kang Y, Korean Chem. Eng. Res., 53(5), 597 (2015)
- Liu SZ, Zhang YC, Wang TX, Yang FX, Mater. Lett., 71, 154 (2012)
- Zeng Y, Qiao L, Bing Y, Wen M, Zou B, Zheng W, Zhang T, Zou G, Sens. Actuators B-Chem., 173, 897 (2012)
- Chaudhari SP, Bodade AB, Chaudhari GN, Korean J. Chem. Eng., 30(11), 2001 (2013)
- Thongrom B, Amornpitoksuk P, Suwanboon S, Baltrusaitis J, Korean J. Chem. Eng., 31(4), 587 (2014)
- Yu HF, Chou HY, Powder Technol., 233, 201 (2013)
- Lu CH, Lai YC, Kale RB, J. Alloy. Compd., 477, 523 (2009)
- Chakraborty A, Devi PS, Maiti HS, Mater. Lett., 20, 63 (1994)
- Chakraborty A, Devi PS, Roy S, Maiti HS, J. Mater. Res., 9, 986 (1994)
- Chakraborty A, Devi PS, Maiti HS, J. Mater. Res., 10, 918 (1995)
- Bell RJ, Millar GJ, Drennan J, Solid State Ion., 131(3-4), 211 (2000)
- Blank DHA, Kruidhof H, Flokstra J, J. Phys. D-Appl. Phys., 21, 226 (1988)
- Mancic L, Milosevic O, Marinkovic B, Lopez S, Rizzo F, Physica C.-Superconductivity, 341-348, 503 (2000)
- Friedman HL, J. Polym. Sci. Part C, 6, 183 (1964)
- Kim SJ, Lee CG, Song PS, Yun JS, Kang Y, Kim JS, Choi MJ, J. Korean Ind. Eng. Chem., 14(5), 634 (2003)
- Pielichowski K, Solid State Ion., 104(1-2), 123 (1997)
- Music S, Dragcevic S, Ivanda M, Eur. Polym. J., 43, 980 (2007)
- Kim UY, Son SM, Kang SH, Kang Y, Kim SD, Jung H, Korean Chem. Eng. Res., 45(6), 604 (2007)
- Vyazovkin S, Wight CA, Int’l. Rev. Phy. Chem., 17, 407 (1998)
- Vyazovkin S, Wight CA, Thermochim. Acta, 340-341, 53 (1999)
- Park SW, Jang CH, Waste Manage., 27, 422 (2010)