화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.4, 547-552, July, 2016
PNIPAM 형성이 금 나노 입자 담지 나노 젤의 제작에 미치는 영향
Effect of PNIPAM Formulation on Fabrication of Nanogels Containing Gold Nanoparticles
E-mail:
초록
금 나노 입자(AuNPs)는 바이오센서와 유전자 또는 단백질의 전달 등 많은 생물의학적 응용분야에 적용이 다양하게 연구되고 있으며 최근에 기능성 부여하고 안정성을 증가시키기 위해 고분자 복합체 연구가 활발히 진행되어 왔다. 이 연구에서, 우리는 다양한 공량체를 기반으로 하는 poly(N-isopropylacrylamide)(PNIPAM) 기반의 나노 젤을 제작하고 AuNPs는 상이한 pH 값 조건 하에서 HAuCl4의 환원에 의해 나노 젤에 담지 하였으며 공단량체에 따른 PNIPAM의 형성이 AuNPs 담지 나노 젤의 제작에 미치는 영향을 연구하였다. AuNPs 담지 나노 젤은 주사전자현미경(TEM)을 통해 그 형태를 관찰하였고, 동적광산란법(DLS), 자외-가시광분광법(UV-Vis)으로 크기 및 흡수강도를 측정하였다.
Gold nanoparticles (AuNPs) have been investigated for various biomedical applications such as biosensors and genes or proteins delivery. Recently, they were modified with peptides or incorporated with polymers to increase cell penetration, specificity to targets, and stability in aqueous medium. In this study, we prepared poly(N-isopropylacrylamide) (PNIPAM) based nanogels systems containing AuNPs and examined the effect of PNIPAM formulation on the formation of AuNPs encapsulated in nanogels by using different comonomers. AuNPs were embedded into nanogels through the reduction of HAuCl4 at different pHs after PNIPAM-based nanogels were formed by a conventional radical polymerization. The morphology characterized by transmission electron microscopy (TEM) confirmed multiple non-aggregated AuNPs in PNIPAM based nanogels. Dynamic light scattering (DLS) showed the size of nanogels containing AuNPs changed with temperature and pH. UV-Vis measurements exhibited different intensity depending on PNIPAM formulations, since different amounts of gold nanoparticles were embedded in nanogels.
  1. Zhi PX, Qing HZ, Gao QL, Ai BY, Chem. Eng. Sci., 61(3), 1027 (2006)
  2. Cho EC, Glaus C, Chen J, Welch MJ, Xia Y, Trends Mol. Med., 16, 561 (2010)
  3. Huang G, Gao J, Hu Z, St John JV, Ponder BC, Moro D, J. Control. Release, 94, 303 (2004)
  4. Qiu Y, Park K, Adv. Drug Deliv. Rev., 53, 321 (2001)
  5. Wang YX, Qin J, Wei Y, Li CP, Ma GH, Powder Technol., 236, 107 (2013)
  6. Mejac I, Tran CD, Anal. Chem., 83, 3520 (2011)
  7. Singh N, Lyon LA, Chem. Mater., 19, 719 (2007)
  8. Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J, ACS Nano, 4, 7078 (2010)
  9. Zhang YP, Liu K, Guan Y, Zhang YJ, RSC Adv., 2, 4768 (2012)
  10. Karg M, Jaber S, Hellweg T, Mulvaney P, Langmuir, 27(2), 820 (2011)
  11. Hebeish A, Farag S, Sharaf S, Shaheen TI, Carbohydr. Polym., 102, 159 (2014)
  12. Huang T, Appl. Phys. A-Mater. Sci. Process., 107, 905 (2012)
  13. Das M, Sanson N, Fava D, Kumacheva E, Langmuir, 23(1), 196 (2007)
  14. Karg M, Pastoriza-Santos I, Perez-Juste J, Hellweg T, Liz-Marzan LM, Small, 3, 1222 (2007)
  15. Jun-Hyun K, Brett WB, Julie AP, Jiayun H, Hongsik B, Nanotechnology, 23, 275606 (2012)
  16. Snowden MJ, Chowdhry BZ, Vincent B, Morris GE, J. Chem. Soc.-Faraday Trans., 92, 5013 (1996)
  17. Ji X, Shao R, Elliott AM, Stafford RJ, Esparza-Coss E, Bankson JA, Liang G, Luo ZP, Park K, Markert JT, Li C, J. Phys. Chem. C, 111, 6245 (2007)
  18. Lu Y, Mei Y, Ballauff M, Drechsler M, J. Phys. Chem. B, 110(9), 3930 (2006)
  19. Das M, Mordoukhovski L, Kumacheva E, Adv. Mater., 20(12), 2371 (2008)
  20. Bao L, Zha L, J. Macromol. Sci. A, 43, 1765 (2006)
  21. Kuang M, Wang DY, Mohwald H, Adv. Funct. Mater., 15(10), 1611 (2005)
  22. Gorelikov I, Field LM, Kumacheva E, J. Am. Chem. Soc., 126(49), 15938 (2004)
  23. Han MY, Gao XH, Su JZ, Nie S, Nat. Biotechnol., 19, 631 (2001)
  24. Yushi T, Hiroshi F, Tomokatsu H, Masayuki N, IOP Conf. Ser., Mater. Sci. Eng., 18, 082008 (2011)
  25. Contreras-Caceres R, Sanchez-Iglesias A, Karg M, Pastoriza-Santos I, Perez-Juste J, Pacifico J, Hellweg T, Fernandez-Barbero A, Liz-Marzan LM, Adv. Mater., 20(9), 1666 (2008)
  26. Barrow SJ, Funston AM, Gomez DE, Davis TJ, Mulvaney P, Nano Lett., 11, 4180 (2011)