Polymer(Korea), Vol.40, No.4, 553-560, July, 2016
탄소나노튜브/그래핀 나노플레이트릿 강화 에폭시 복합재의 열적 및 기계적 특성에 미치는 불소화의 영향
Effect of Fluorination on Thermal and Mechanical Properties of Carbon Nanotube and Graphene Nanoplatelet Reinforced Epoxy Composites
E-mail:
초록
에폭시 수지와의 계면 결합력을 향상시키기 위하여, 탄소나노튜브(CNT)와 그래핀 나노플레이트릿(GNP)을 불소화시켰다. 표면 처리된 CNT와 GNP의 표면화학적 특성은 광전자 분광기를 이용하여 분석되었다. 또한 그 에폭시 복합재의 기계적 성질 및 열안정성을 평가하였다. CNT와 GNP 보강 에폭시 복합재는 CNT 보강 에폭시 복합재와 비교하여 비교적 높은 강도를 보였다. 이러한 결과는 종횡비가 서로 다른 두 강화재 때문에 네트워크 구조가 형성되어 나타나는 크기효과에 기인하였다. 불소화 표면처리된 CNT/GNP 보강 에폭시 복합재의 인장강도, 충격강도 및 열안정성은 미첨가 에폭시와 비교하여 각각 101, 69, 및 130%로 크게 향상되었다. 이 결과는 크기 효과 및 표면처리에 따른 강화재와 에폭시 수지의 계면 결합력 향상에 의한 시너지 효과에 기인한 것으로 보인다.
To improve interfacial interaction with the epoxy resin, carbon nanotube (CNT) and graphene nanoplatelet (GNP) are fluorinated. A surface-chemical property of the surface-treated CNT and GNP has been analyzed by X-ray photoelectron microscopy (XPS). Then the mechanical properties and thermal stabilities of composites which are reinforced by them are also evaluated. The mechanical properties of CNT/GNP reinforced epoxy composites are comparatively higher than those of epoxy composites reinforced with CNT only. These results are attributed to a size effect resulted from the network structures due to different aspect ratios of reinforcement. The tensile, impact strength, and thermal stability of the composites including fluorinated CNT and GNP are remarkably increased by 101, 69, and 130% compared to those of neat epoxy, respectively. These results are attributed to the synergy effect of the size effect and improvement of interfacial interaction between surface-treated reinforcements and epoxy resin.
- Lee SE, Jeong E, Lee MY, Lee MK, Lee YS, J. Ind. Eng. Chem., 33, 73 (2016)
- Giang T, Kim J, J. Ind. Eng. Chem., 30, 77 (2015)
- Chen JL, Jin FL, Park SJ, Macromolecules, 18, 9 (2010)
- Ma PC, Kim JK, Tang BZ, Compos. Sci. Technol., 67, 2965 (2007)
- Koo MY, Shin HC, Kim WS, Lee GW, Carbon Lett., 15, 255 (2014)
- Laird ED, Li CY, Macromolecules, 46(8), 2877 (2013)
- Kim M, Kim Y, Baeck SH, Shim SE, Carbon Lett., 16, 34 (2015)
- Rashad M, Pan F, Asif M, Tang A, J. Ind. Eng. Chem., 20(6), 4250 (2014)
- Lee SE, Cho S, Lee YS, Carbon Lett., 15, 32 (2014)
- Tung WS, Bird V, Composto RJ, Clarke N, Winey KI, Macromolecules, 43, 5345 (2013)
- Zhang X, Alloul O, Zhu JH, He QL, Luo ZP, Colorado HA, Haldolaara N, Nchchige, Young DP, Shen TD, Wei SY, Guo ZH, RSC Adv., 3, 24 (2013)
- Zhang X, Alloul O, He QL, Zhu JH, Verde MJ, Li YT, Wei SY, Guo ZH, Polymer, 54, 14 (2013)
- Noh YJ, Kim HS, Kim SY, Carbon Lett., 13, 243 (2012)
- Bae SH, Park YS, Kim JH, Macromolecules, 15, 4 (2007)
- Gu HB, Tadakamalla S, Zhang X, Huang YD, Jiang Y, Colorado HA, Luo ZP, Wei SY, Guo ZH, J. Mater. Chem. C, 1, 4 (2013)
- Im JS, Park IJ, In SJ, Kim TJ, Lee YS, J. Fluor. Chem., 130, 12 (2009)
- Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26(1), 92 (2015)
- Kim MJ, Jung MJ, Kim MI, Choi SS, Lee YS, Appl. Chem. Eng., 26(5), 587 (2015)
- Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I, Carbon, 78, 268 (2014)
- Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK, Prog. Polym. Sci, 36, 5 (2011)
- Yu HR, Kim JG, Im JS, Bae TS, Lee YS, J. Ind. Eng. Chem., 18, 2 (2012)
- Hattori Y, Noguchi N, Okino F, Touhara H, Nakahigashi Y, Utsumi S, Tanaka H, Kanoh H, Kaneko K, Carbon, 45, 7 (2007)
- Chatterjee S, Nafezarefi F, Tai NH, Schlagenhauf L, Nuesch FA, Chu BTT, Carbon, 50, 15 (2012)
- Thostenson ET, Chou TW, J. Phys. D-Appl. Phys., 35, 77 (2002)
- Thostenson ET, Li C, Chou TW, Compos. Sci. Technol., 65, 491 (2005)
- Lee SE, Cho S, Lee YS, Carbon Lett., 15, 32 (2014)
- An JE, Jeong YG, Eur. Polym. J., 49, 1322 (2013)
- Doyle CD, Anal. Chem., 33, 77 (1961)
- Park SH, Lee SG, Kim SH, J. Appl. Polym. Sci., 122(3), 2060 (2011)
- Kim JY, Kim DK, Kim SH, Polym. Compos., 30, 1779 (2009)
- Maiti S, Shrivastava NK, Suin S, Khatua BB, ACS Appl. Mater. Interf., 5, 11 (2013)