화학공학소재연구정보센터
Macromolecular Research, Vol.24, No.7, 587-595, July, 2016
Optimization of production, biochemical characterization and in vitro evaluation of the therapeutic potential of fibrinolytic enzymes from a new Bacillus amyloliquefaciens
E-mail:
The capacity of fibrinolytic enzymes to degrade blood clots makes them of high relevance in medicine and in the pharmaceutical industry. In this work, forty-three microorganisms of the genus Bacillus were evaluated for their potential to produce fibrinolytic proteases. Thirty bacteria were confirmed as producers of fibrinolytic enzymes, the best results obtained for the strain Bacillus amyloliquefaciens UFPEDA 485. The optimization of the enzyme production conditions was done by a central composite design (CCD) star 23 that allowed to define the optimal conditions for soybean flour and glucose concentrations and agitation rate. The highest fibrinolytic activity (FA) of 813 U mL-1 and a degradation of blood clot in vitro of 62% were obtained in a medium with 2% (w/v) of soybean flour and 1% (w/v) glucose at 200 rpm after 48 h of cultivation, at pH 7.2 and 37 °C. The obtained fibrinolytic enzyme was characterized biochemically. Fibrinolytic activity was inhibited by PMSF (fluoride methylphenylsulfonyl - C7H7FO2S) 91.52% and EDTA (ethylenediaminetetraacetic acid - C10H16N2O8) 89.4%, confirming to be a serine-metallo protease. The optimum pH and temperature were 7.0 and 37 ℃, respectively, and the enzyme was stable for 12 h. The fibrinolytic activity at physiological conditions of this enzyme produced by Bacillus amyloliquefaciens UFPEDA 485, as well as its long term stability, demonstrate that it has suitable characteristics for human and veterinary applications, and promises to be a powerful drug for the treatment of vascular diseases.
  1. Schallmey M, Singh A, Ward OP, Can. J. Microbiol., 50, 1 (2004)
  2. Rathakrishnan P, Nagarajan P, Int. J. ChemTech Res., 3, 1526 (2011)
  3. Choi SH, Whang KS, Park JS, Choi WY, Yoon MH, Macromol. Res., 13(4), 339 (2005)
  4. Mukhopadhyay TK, Allison N, Charlton S, Hudson MJ, Hallis B, King A, Baker R, Noonan S, McGlashan J, West K, Levy MS, Ward JM, Lye GJ, Biochem. Eng. J., 50, 139 (2010)
  5. Sumi CD, Yang BW, Yeo IC, Hahm YT, Can. J. Microbiol., 61, 93 (2015)
  6. Deepak R, Jayapradha R, J. Mycol. Med., 25, 15 (2015)
  7. Sales AE, de Souza FASD, Teixeira JA, Porto TS, Porto ALF, Appl. Biochem. Biotechnol., 170(7), 1676 (2013)
  8. Huy DNA, Hao PA, Hung PV, Int. Food Res. J., 23, 326 (2016)
  9. Sundararajan S, Kannan CN, Chittibabu S, J. Biosci. Bioeng., 111(2), 128 (2011)
  10. Jin M, Chen W, Huang W, Rong L, Gao Z, Acta Pharmacol. Sin. B, 3, 123 (2013)
  11. Choi JH, Sapkota K, Park SE, Kim S, Kim SJ, Biochimie, 95, 1266 (2013)
  12. Al-Juamily EF, Al-Zaidy BH, Chem. Sci. Rev. Lett., 2, 256 (2013)
  13. Uesugi Y, Usuki H, Iwabuchi M, Hatanaka T, Enzyme Microb. Technol., 48(1), 7 (2011)
  14. Avhad DN, Vanjari SS, Rathod VK, Am. J. Curr. Microbiol., 1, 1 (2013)
  15. Ahn MY, Hahn BS, Ryu KS, Kim JW, Kim I, Kim YS, Thromb. Res., 112, 339 (2003)
  16. He J, Chen S, Gu J, Febs Lett., 518, 2965 (2007)
  17. Klafke JZ, Silva MA, Rossato MF, Trevisan G, Walker CIB, Leal CAM, Borges DO, Schetinger MRC, Moresco RN, Duarte MMMF, Santos ARS, Viecili PRN, Ferreira J, Evid.-Based Complement. Alternat. Med., 2012, 1 (2012)
  18. Kim DW, Sapkota K, Choi JH, Kim YS, Kim S, Kim SJ, Process Biochem., 48(2), 340 (2013)
  19. Omura K, Hitosugi M, Zhu X, Ikeda M, Maeda H, Tokudome S, J. Pharm. Sci., 99, 247 (2005)
  20. Agrebi R, Hmidet N, Hajji M, Ktari N, Haddar A, Fakhfakh-Zouari N, Nasri M, Appl. Biochem. Biotechnol., 162(1), 75 (2010)
  21. Mukherjee AK, Rai SK, Thakur R, Chattopadhyay P, Kar SK, Biochimie, 94, 1300 (2012)
  22. Bajaj BK, Sharma N, Singh S, Biocatal. Agric. Biotechnol., 2, 204 (2013)
  23. Kanagasabai V, Thangavelu V, J. Adv. Sci. Res., 4, 13 (2013)
  24. Porto AL, Campostakaki GM, Lima JL, Appl. Biochem. Biotechnol., 60(2), 115 (1996)
  25. Bradford MM, Anal. Biochem., 72, 248 (1976)
  26. Wu B, Wu LC, Ruan LG, Ge M, Chen DJ, Curr. Microbiol., 58(5), 522 (2009)
  27. Astrup T, Mullertz S, Arch. Biochem. Biophys., 40, 346 (1952)
  28. Wang S, Wu Y, Liang T, N. Biotechnol., 28, 196 (2011)
  29. Chen B, Huo J, He Z, He Q, Hao Y, Chen Z, Afr. J. Microbiol. Res., 7, 2001 (2013)
  30. Mukherjee AK, Rai SK, N. Biotechnol., 28, 182 (2011)
  31. Ki JK, Zhang W, Qian PY, J. Microbiol. Methods, 77, 48 (2009)
  32. Bajaj BK, Singh S, Khullar M, Singh K, Bhardwaj S, Braz. Arch. Biol. Technol., 57, 653 (2014)
  33. Gad GR, Nirmala S, Narendar S, Int. J. Pharm. Pharm. Sci., 6, 370 (2014)
  34. Vijayaraghavan P, Vincent SGP, BioMed Res. Int., 2014, 1 (2014)
  35. Mohanasrinivasan V, Devi CS, Biswas R, Paul F, Mitra M, Selvarajan E, Suganthi V, Bangladesh J. Pharmacol., 8, 110 (2013)
  36. Heo K, Cho KM, Lee CK, Kim GM, Shin JH, Kim JS, Kim JH, J. Microbiol. Biotechnol., 23, 974 (2013)
  37. Mahajan PM, Nayak S, Lele SS, J. Biosci. Bioeng., 113(3), 307 (2012)