화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.5, 786-796, September, 2016
부틸아크릴레이트(BA)/메틸메타아크릴레이트(MMA) 공중합체의 제조 및 이들과 Poly(lactic acid) 블렌드의 열적, 기계적 성질
Copolymerization of Butyl Acrylate (BA)/Methyl Methacrylate (MMA) and Thermal, Mechanical Properties of Poly(lactic acid)/Acrylic Copolymer Blends
E-mail:
초록
Poly(lactic acid)(PLA)는 여러 가지 장점에도 불구하고 일반적으로 낮은 유연성의 단점을 가진다. 이런 물성을 보완하기 위해 n-butyl acrylate(BA)와 methyl methacrylate(MMA)를 함량별로 poly(BA-co-MMA)를 현탁중합으로 제조하였다. 함량에 따라 제조된 poly(BA-co-MMA)의 구조, 젤 함량, 분자량, 열적 성질을 분석하였다. 그리고 PLA/poly(BA-co-MMA) 50 wt%/50 wt% 블렌드를 동적 점탄성 분석, 용융흐름지수, 인장 시험, 주사 전자 현미경을 통해 열적, 기계적 성질, 용융 흐름, 모폴로지를 분석하였다. 본 연구에서는 BA의 함량이 40~60%의 poly(BA-co-MMA)를 PLA와 블렌드 시 PLA의 낮은 유연성에 도움을 줄 수 있을 것으로 보여진다.
Despite the several advantages, low flexibility and high brittleness in poly(actic acid) (PLA) are generally recognized as disadvantages. In order to improve these properties, poly(BA-co-MMA) with different monomer ratio was prepared by suspension polymerization. The effect of the monomer ratio on the structure, gel content, molecular weight, and thermal property of poly(BA-co-MMA) was investigated. And thermal, mechanical, melt flow, and morphology of PLA/poly(BA-co-MMA) 50 wt%/50 wt% blend were investigated by dynamic mechanical anaysis (DMA), melt flow index (MFI), tensile tests, and scanning electron microscopy (SEM). In this study, the introduction of poly(BA-co-MMA)with BA content of 40~60% increased the flexibility of PLA.
  1. Park NH, Kim DH, Kim CM, Jung ES, Lee JW, Biomater. Res., 17, 041 (2013)
  2. Griffith LG, Acta Mater., 48, 263 (2000)
  3. Ray SS, Okamoto M, Macromol. Rapid Commun., 24(14), 815 (2003)
  4. Di YW, Iannace S, Di Maio E, Nicolais L, J. Polym. Sci. B: Polym. Phys., 43(6), 689 (2005)
  5. Kim ES, Kim BC, Kim SH, J. Polym. Sci. B: Polym. Phys., 42(6), 939 (2004)
  6. Gupta MC, Deshmukh VG, Polymer, 24, 827 (1983)
  7. Lee SY, Chin IJ, Jung JS, Eur. Polym. J., 35, 2147 (1999)
  8. Bechtold K, Hillmyer MA, Tolman WB, Macromolecules, 34(25), 8641 (2001)
  9. Meredith JC, Amis EJ, Macromol. Chem. Phys., 201, 733 (2000)
  10. Jacobsen S, Fritz HG, Polym. Eng. Sci., 39(7), 1303 (1999)
  11. Martin O, Averous L, Polymer, 42(14), 6209 (2001)
  12. Ljungberg N, Wesslen B, J. Appl. Polym. Sci., 86(5), 1227 (2002)
  13. Sayer C, Lima EL, Pinto JC, Arzamendi G, Asua JM, J. Polym. Sci. A: Polym. Chem., 38(7), 1100 (2000)
  14. Parouti S, Kammona O, Kiparissides C, Bousquet J, Polym. React. Eng., 11(4), 829 (2003)
  15. Elizalde O, Arzamendi G, Leiza JR, Asua JM, Ind. Eng. Chem. Res., 43(23), 7401 (2004)
  16. Dube MA, Penlidis A, Polym. Int., 37, 235 (1995)
  17. Chern CS, Hsu H, J. Appl. Polym. Sci., 55(4), 571 (1995)
  18. Novak RW, Adv. Org. Coat. Sci. Technol. Ser., 10, 54 (1998)
  19. Ouzineb K, Heredia MF, Graillat C, McKenna TF, J. Polym. Sci. A: Polym. Chem., 39(16), 2832 (2001)
  20. Britton DJ, Lovell PA, Heatley F, Venkatesh R, Macromol. Symp., 175, 95 (2001)
  21. Plessis C, Arzamendi G, Leiza JR, Schoonbrood HAS, Charmot D, Asua JM, Macromolecules, 33(1), 4 (2000)
  22. Plessis C, Arzamendi G, Leiza JR, Schoonbrood HAS, Charmot D, Asua JM, Macromolecules, 33(14), 5041 (2000)
  23. Farcet C, Belleney J, Charleux B, Pirri R, Macromolecules, 35(13), 4912 (2002)
  24. Li DH, Grady MC, Hutchinson RA, Ind. Eng. Chem. Res., 44(8), 2506 (2005)
  25. Gonzalez I, Asua JA, Leiza JR, Polymer, 48(9), 2542 (2007)
  26. Staudinger H, Schneiders J, Ann. Chim., 541, 151 (1939)
  27. Alfrey T, Goldfinger G, J. Chem. Phys., 12, 205 (1994)
  28. Wall FT, J. Am. Chem. Soc., 66, 2050 (1944)
  29. Mayo FR, Lewis FM, J. Am. Chem. Soc., 66, 1594 (1944)
  30. Aerdts AM, German AL, van der Velden GPM, Magn. Reson. Chem., 32, S80 (1994)
  31. Brosse JC, Gauthier JM, Lenain JC, Makromol. Chem., 183, 1379 (1983)
  32. Kelen T, Tudos F, React. Kinet. Catal. Lett., 1, 487 (1974)
  33. Kelen T, Tudos F, Makromol. Chem., 191, 1863 (1990)
  34. Johnson M, Karmo TS, Smith RR, Eur. Polym. J., 14, 409 (1978)
  35. Fox TG, Am. Phys. Soc., 2, 123 (1956)
  36. Olabishi O, Robeson LM, Shaw MT, Polymer-Polymer Micsibility, Academic Press, New York, 1986.
  37. Hiemenz PC, Lodge TP, Polymer Chemistry, 2nd ed., CRC Press, Boca Raton, Florida, 2007.
  38. Brostow W, Chiu R, Kalogeras IM, Mater. Lett., 62, 152 (2008)
  39. Gordon M, Taylor JS, J. Appl. Chem., 2, 483 (1952)
  40. An L, He D, Jing J, Wang Z, Yu D, Jiang B, Ma R, Eur. Polym. J., 33, 1523 (1997)
  41. Kwei TK, J. Polym. Sci., Polym. Lett. Ed., 22, 307 (1984)
  42. Painter PC, Graf JF, Coleman MM, Macromolecules, 24, 5630 (1991)
  43. Choudhary V, Varma HS, Varma IK, Polymer, 32, 2534 (1991)
  44. Kim DJ, Lee CW, J. Korean Ind. Eng. Chem., 12(1), 104 (2001)
  45. Rodriguez F, Principles of Polymer Systems, McGraw-Hill, Toronto, p 167 (1970).
  46. Bremner T, Rudin A, J. Appl. Polym. Sci., 41, 1617 (1990)
  47. Svoboda P, Poongavalappil S, Theravalappil R, Svobodova D, Mokrejs P, Polym. Int., 62, 184 (2012)
  48. Kye H, Shin K, Bang D, Elast. Compos., 41, 97 (2006)
  49. Gad Y, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 267, 3528 (2009)
  50. Bee ST, Hassan A, Ratnam C, Tee TT, Sin LT, J. Vinyl. Addit. Technol., 20, 91 (2014)
  51. Basfar AA, Ali ZI, Radiat. Phys. Chem., 80, 257 (2011)