Polymer(Korea), Vol.40, No.5, 797-803, September, 2016
스티렌-이소프렌-스티렌 블록 공중합체/그래핀 나노복합재료의 혼화성과 물성
Compatibility and Physical Properties of Styrene-Isoprene-Styrene Block Copolymer/Graphene Nanocomposites
E-mail:
초록
그래핀과 스티렌-이소프렌-스티렌 블록공중합체(SIS)와의 혼화성을 평가하였다. 그래핀은 이소프렌 블록보다는 스티렌 블록과의 혼화성이 좋아, 고분자 중 스티렌 블록의 함량이 많을수록 그래핀의 분산이 양호해지면서, 전기전도성 그래핀에 의해 복합재료의 전기전도도가 효과적으로 향상되었다. 그래핀이 스티렌 블록의 영역에 우선적으로 분포함을 시차주사열량계, 그리고 동적기계적 분석기로 분석한 유리전이온도의 변화로부터 확인할 수 있었다. 그래핀의 투입으로 복합재료의 모듈러스는 크게 향상되었으나, 고분자의 이동성(mobility)이 감소하여 신도, 강인성 등은 크게 감소하였다.
The compatibility of graphene with styrene-isoprene-styrene block copolymer (SIS) was examined. The morphology of the SIS/graphene composite observed by optical microscopy and the electrical conductivity of the composite showed that the compatibility of graphene with polystyrene (PS) block is better than that with polyisoprene (PI) block. Thermal analysis showed that the graphene is distributed preferentially at PS block domain rather than at PI block domain. The graphene enhanced the modulus of matrix polymer drastically, however, elongation at break and toughness were reduced evidently.
Keywords:graphene;styrene-isoprene-styrene block copolymer;compatibility;electrical conductivity;tensile properties
- Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK, Prog. Polym. Sci, 36, 638 (2011)
- Park GH, Kim KT, Ahn YT, Lee H, Jeong HM, J. Ind. Eng. Chem., 20(6), 4108 (2014)
- Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132 (2010)
- Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A, Angew. Chem.-Int. Edit., 48, 7752 (2009)
- Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA, J. Phys. Chem. B, 110(17), 8535 (2006)
- Kim H, Abdala AA, Macosko CW, Macromolecules, 43(16), 6515 (2010)
- Kim H, Macosko CW, Polymer, 50(15), 3797 (2009)
- Kim CI, Oh SM, Oh KM, Gansukh E, Lee HI, Jeong HM, Polym. Int., 63, 1003 (2014)
- Choi JT, Kim DH, Ryu KS, Lee H, Jeong HM, Shin CM, Kim JH, Kim BK, Macromol. Res., 19(8), 809 (2011)
- Lee KS, Kim JH, Jeong HM, Polym. Korea, 38(3), 307 (2014)
- Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud'homme RK, Brinson LC, Nat. Nanotechnol., 3(6), 327 (2008)
- Steurer P, Wissert R, Thomann R, Mulhaupt R, Macromol. Rapid Commun., 30(4-5), 316 (2009)
- Zhao ZF, Wang ZY, Zhang CQ, J. Adhes. Sci. Technol., 28(11), 1090 (2014)
- Chae C, Seo YH, Jo Y, Kim KW, Song W, An KS, Choi S, Choi Y, Lee SS, Jeong S, ACS Appl. Mater. Interfaces, 7, 4109 (2015)
- Hu M, Cai X, Guo Q, Bian B, Zhang T, Yang J, ACS Nano, 10, 396 (2016)
- Peponi L, Tercjak A, Martin L, Mondragon I, Kenny JM, Express Polym. Lett., 5, 104 (2011)
- Brook I, Mechrez G, Suckeveriene RY, Tchoudakov R, Narkis M, Polym. Adv. Technol., 24, 758 (2013)
- Dao TD, Jeong HM, Mater. Res. Bull., 70, 651 (2015)
- Seo HM, Park JH, Dao TD, Jeong HM, J. Nanomater., 805201 (2013)
- Park JH, Dao TD, Lee HI, Jeong HM, Kim BK, Materials, 7, 1520 (2014)
- Peponi L, Tercjak A, Verdejo R, Lopez-Manchado MA, Mondragon I, Kenny JM, J. Phys. Chem. C, 113, 17973 (2009)
- Peponi L, Tercjak A, Gutierrez J, Cardinali M, Mondragon I, Valentini L, Kenny JM, Carbon, 48, 2590 (2010)
- Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS, Nano Lett., 9, 1593 (2009)
- Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN, Langmuir, 26(5), 3208 (2010)
- Krevelen DWV, Properties of Polymers, 3rd Ed., Elsevier, Amsterdam, p 206 (1990).
- Pang H, Chen T, Zhang G, Zeng B, Li ZM, Mater. Lett., 64, 2226 (2010)
- Yousefi N, Gudarzi MM, Zheng Q, Aboutalebi SH, Sharif F, Kim JK, J. Mater. Chem., 22, 12709 (2010)