화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.11, 3194-3202, November, 2016
Modeling of gas permeation through mixed matrix membranes using a comprehensive computational method
E-mail:
Three different morphologies can occur at the interface of inorganic and polymeric phases in mixed matrix membranes (MMMs). These morphologies are characterized by their different parameters such as partial pore blockage factor (α), polymer chain rigidification factor (β), and thickness of rigidified layer or void region. In this study, the morphology of three MMMs has been evaluated using a comprehensive computational method. The average absolute relative error (%AARE) is used as a criterion for optimizing three various MMM morphological parameters. According to the obtained optimum parameters, it was confirmed that two MMMs of C60/Matrimid and PVAc-Zeolite 4A have pore blockage and polymer chain rigidified defects. The results show that the morphology of ZIF-8/6FDA-DAM can be considered as an ideal morphology. After obtaining the morphological parameters, the permeability of the studied MMMs was predicted based on the modified Maxwell model and good agreement was observed between the calculated value and the experimental data.
  1. Baker RW, Membrane Technology and Applications, 2nd Ed., 1, Wiley (2004).
  2. Lin H, Freeman BD, J. Mol. Struct., 739, 57 (2005)
  3. McLeary E, Jansen J, Kapteijn F, Microporous Mesoporous Mater., 90, 198 (2006)
  4. Pandey P, Chauhan R, Prog. Polym. Sci, 26, 853 (2001)
  5. Chung TS, Jiang LY, Li Y, Kulprathipanja S, Prog. Polym. Sci, 32, 483 (2007)
  6. Li Y, Krantz WB, Chung TS, AIChE J., 53(9), 2470 (2007)
  7. Mahajan R, Koros WJ, Polym. Eng. Sci., 42(7), 1420 (2002)
  8. Mahajan R, Koros WJ, Thundyil M, Membr. Technol., 1999, 6 (1999)
  9. Vu DQ, Koros WJ, Miller SJ, J. Membr. Sci., 211(2), 335 (2003)
  10. Semsarzadeh MA, Ghalei B, Fardi M, Esmaeeli M, Vakili E, Korean J. Chem. Eng., 31(5), 841 (2014)
  11. Arjmandi M, Pakizeh M, Pirouzram O, Korean J. Chem. Eng., 32(6), 1178 (2015)
  12. Bouma RH, Checchetti A, Chidichimo G, Drioli E, J. Membr. Sci., 128(2), 141 (1997)
  13. Pal R, J. Colloid Interface Sci., 317(1), 191 (2008)
  14. Moore TT, Mahajan R, Vu DQ, Koros WJ, AIChE J., 50(2), 311 (2004)
  15. Maxwell JC, Clarendon Press, Oxford (1881).
  16. Gonzo EE, Parentis ML, Gottifredi JC, J. Membr. Sci., 277(1-2), 46 (2006)
  17. Banhegyi G, Colloid Polym. Sci., 264, 1030 (1986)
  18. Lewis T, Nielsen L, J. Appl. Polym. Sci., 14, 1449 (1970)
  19. Nielsen LE, J. Appl. Polym. Sci., 17, 3819 (1973)
  20. Aroon MA, Ismail AF, Matsuura T, Montazer-Rahmati MM, Sep. Purif. Technol., 75(3), 229 (2010)
  21. Vinh-Thang H, Kaliaguine S, J. Membr. Sci., 452, 271 (2014)
  22. Hoang VT, Kaliaguine S, Chem. Rev., 113(7), 4980 (2013)
  23. Hashemifard SA, Ismail AF, Matsuura T, J. Membr. Sci., 347(1-2), 53 (2010)
  24. Gheimasi KM, Mohammadi T, Bakhtiari O, J. Membr. Sci., 427, 399 (2013)
  25. Sheffel JA, Tsapatsis M, J. Membr. Sci., 295(1-2), 50 (2007)
  26. Sheffel JA, Tsapatsis M, J. Membr. Sci., 326(2), 595 (2009)
  27. Singh T, Kang DY, Nair S, J. Membr. Sci., 448, 160 (2013)
  28. Yang AC, Liu CH, Kang DY, J. Membr. Sci., 495, 269 (2015)
  29. Chung TS, Chan SS, Wang R, Lu ZH, He CB, J. Membr. Sci., 211(1), 91 (2003)
  30. Zhang C, Dai Y, Johnson JR, Karvan O, Koros WJ, J. Membr. Sci., 389, 34 (2012)
  31. Mahajan R, Koros WJ, Ind. Eng. Chem. Res., 39(8), 2692 (2000)
  32. Varanasi S, Guskova O, John A, Sommer JU, J. Chem. Phys., 142, 224308 (2015)
  33. Adams RT, Lee SS, Bae TH, Ward JK, Johnson JR, Jones CW, Nair S, Koros WJ, J. Membr. Sci., 367(1-2), 197 (2011)