Korean Journal of Chemical Engineering, Vol.33, No.11, 3245-3250, November, 2016
Heat dissipation properties of polyimide nanocomposite films
E-mail:
In development of modern electric fields, the growth of kinds of electronic devices has made the supply and research on heat dissipating films become important. To synthesize heat dissipation films with high thermal resistance for possible use in electronics applications, carbon black is doped into polyimide to increase the dissipating rate of films, at loadings of 50, 100, and 150 wt%. The resulting films display excellent thermal properties; the thermal conductivity of the film with 150 wt% carbon black is 5.59Wㆍm-1K-1, a value that is 35 times higher than that of pure polyimide (0.16Wㆍm-1K-1). To theoretically confirm the increased dissipating ability of composite films, the Nielsen equation is used for verification. The experimental results show an excellent fit with the theoretical values calculated by the Nielsen equation. The great thermal stability of polyimide composite film with carbon black is verified by using TGA and DSC, the temperature for 1% thermal decomposition of the 150wt% film is 541℃, and the glass transition temperature is 315℃. The heat conduction results also show high heat dissipation data, which make the carbon black composite polyimide films an excellent candidate for use in electric devices to deplete the heat generated.
- Bessonov MI, Zubkov VA, Polyamic acids and polyimides:Synthesis, transformations, and structure, CRC Press (1993).
- Ghosh M, Polyimides: Fundamentals and applications, CRC Press, 36 (1996).
- Feger C, Advances in polyimide: Science and technology, CRC Press (1993).
- Mittal KL, Polyimides and other high temperature polymers: Synthesis, characterization and applications, CRC Press, 3 (2005).
- Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ, Thermochim. Acta, 430(1-2), 155 (2005)
- Gmelin E, Asen-Palmer M, Reuther M, Villar R, J. Phys. D-Appl. Phys., 32, R19 (1999)
- Wolff EG, Schneider DA, Int. J. Heat Mass Transf., 41(22), 3469 (1998)
- Luo X, Chugh R, Biller BC, Hoi YM, Chung DDL, J. Electron. Mater., 31, 535 (2002)
- Li TL, Hsu SLC, J. Phys. Chem. B, 114, 6825-9 (2010)
- Donnet JB, Carbon fibers, CRC Press (1998).
- Boehm HP, Carbon N. Y., 32, 759 (1994)
- Coughlin RW, Ezra FS, Environ. Sci. Technol., 2, 291 (1968)
- Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K, J. Mater. Sci., 17, 1610 (1982)
- Sumita M, Asai S, Miyadera N, Jojima E, Miyasaka K, Colloid Polym. Sci., 264, 212 (1986)
- Sumita M, Abe H, Kayaki H, Miyasaka K, J. Macromol. Sci., 25, 171 (1986)
- Karasek L, Sumita M, J. Mater. Sci., 31(2), 281 (1996)
- Rinaldi A, Tessonnier JP, Schuster ME, Blume R, Girgsdies F, Zhang Q, Jacob T, Abd Hamid SB, Su DS, Schlogl R, Angew. Chem.-Int. Edit., 50, 3313 (2011)
- Hess WM, Herd CR, Donnet JB, Bansal RC, Wang MJ, Marcel Dekker Inc., New York, 106 (1993).
- Han Z, Fina A, Prog. Polym. Sci, 36, 914 (2011)
- Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN, Appl. Phys. Lett., 92, 151911 (2008)
- Yu AP, Ramesh P, Sun XB, Bekyarova E, Itkis ME, Haddon RC, Adv. Mater., 20(24), 4740 (2008)
- Spitalsky Z, Tasis D, Papagelis K, Galiotis C, Prog. Polym. Sci, 35, 357 (2010)
- Ghose S, Working DC, Connell JW, Smith JG, Watson KA, Delozier DM, Sun YP, Lin Y, High Perform. Polym., 18, 961 (2006)
- Lee YJ, Huang JM, Kuo SW, Lu JS, Chang FC, Polymer, 46(1), 173 (2005)
- Xue P, Bao Y, Li Q, Wu C, Phys. Chem. Chem. Phys., 12, 11342 (2010)
- Bucknall CB, Gilbert AH, Polymer, 30, 213 (1989)
- Nielsen LE, Ind. Eng. Chem. Fundam., 13, 17 (1974)
- Ghose S, Watson KA, Delozier DM, Working DC, Connell JW, Smith JG, Sun YP, Lin Y, Key Eng. Mater., 334-335, 749 (2007)
- Huang H, Liu CH, Wu Y, Fan SS, Adv. Mater., 17(13), 1652 (2005)
- Shim H, Seo M, Park S, J. Mater. Sci., 7, 1881 (2002)
- Brasil AM, Farias TL, Carvalho MG, J. Aerosol Sci., 30(10), 1379 (1999)
- Nielsen LE, J. Appl. Polym. Sci., 17, 3819 (1973)