화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.6, 998-1004, November, 2016
전기방사에 의한 폴리에틸렌 옥사이드와 Nitrogen으로 기능화된 박테리아 셀룰로오스 나노휘스커 복합체의 나노섬유 제조와 특성 평가
Preparation and Thermal Properties Evaluation of Polyethylene Oxide and Nitrogen-Functionalized Bacterial Cellulose Nanowhisker Composite Nanofibers via Electrospinning
E-mail:
초록
본 연구는 폴리에틸렌 옥사이드/질소기가 형성된 박테리아 셀룰로오스 나노휘스커(PEO/N-BCNWs) 복합 나노섬유를 제작하였다. PEO/N-BCNWs 복합 나노섬유는 폴리에틸렌 옥사이드 나노섬유, 폴리에틸렌 옥사이드/박테리아 셀룰로오스 나노휘스커 복합 나노섬유와 비교하여 직경이 가늘어 졌고 균일하게 형성되었음을 확인하였고, 열중량 분석으로부터 ash가 높게 남아있음을 확인하였다. 그러나 시차 주사 열량계 분석으로부터 융합점이나 결정화 온도가 농도 증가에 따라서 감소되고 있음을 확인할 수 있었다. 이러 결과들로부터 기능화된 N-BCNWs를 필러로써 복합화한 나노섬유의 열적 특성 변화를 확인할 수 있었고 바이오나 센서 등의 응용이 가능할 것으로 판단된다.
Composite of polyethylene oxide (PEO)/nitrogen-containing bacterial cellulose nanowhiskers (N-BCNWs) were prepared using an electrospinning method and compared to electrospun PEO and composite of PEO/bacterial cellulose nanowhiskers (BCNWs). N-BCNWs were prepared by plasma treatment of BCNWs using a microwave oven, after which the presence of nitrogen-containing functional groups (2.74%) on their surface was confirmed. The diameter of the electrospun PEO/N-BCNWs was smaller than that of PEO/BCNWs composite nanofibers with the same PEO and BCNW concentrations. The weight losses, melting temperature and crystallization temperature of PEO/N-BCNWs were also lower than those of the other electrospun samples. These results show that the nitrogen-functionalized BCNWs used as a filler in the PEO polymer are suitable for application in humidity sensor and biomedical fields.
  1. Lej K, Lewandowicz G, Polish J. Environ. Stud., 19, 255 (2010)
  2. Zhao Y, Qiu Y, Wang H, Chen Y, Jin S, Chen S, Int. J. Polym. Sci., 2016, 1 (2016)
  3. Kim J, Choi SY, Kim KM, Lee CH, Park HS, Hwang SS, Hong SM, Kwak S, Yoo HO, Macromol. Symp., 245, 565 (2006)
  4. Archambault JG, Brash JL, Colloids Surf. B: Biointerfaces, 39, 9 (2004)
  5. Pilehrood MK, Dilamian M, Mirian M, Sadeghi-Aliabadi H, Nousiainen LP, Harlin A, Res. Int., 2014, 1 (2014)
  6. Hu XM, Cheng WM, Li C, Wang G, Lin X, Liu Z, Polym. Bull., 73(1), 1 (2016)
  7. Mahadeva SK, Kim J, Polym. Eng. Sci., 50(6), 1199 (2010)
  8. Jang SS, Goddard WA, Kalani MYS, J. Phys. Chem. B, 111(7), 1729 (2007)
  9. Haryanto, Kim SC, Kim JH, Kim JO, Ku SK, Cho H, Han DH, Huh P, Macromol. Res., 22(2), 131 (2014)
  10. Park WI, Kang M, Kim HS, Jin HJ, Macromol. Symp., 249, 289 (2007)
  11. Zhou CJ, Chu R, Wu R, Wu QL, Biomacromolecules, 12(7), 2617 (2011)
  12. Shi D, Wang F, Lan T, Zhang Y, Shao Z, Cellulose, 23, 1899 (2016)
  13. Wang JY, Jia HB, Zhang JJ, Ding LF, Huang Y, Sun DP, Gong XD, J. Mater. Sci., 49(17), 6093 (2014)
  14. Pinto ERP, Barud HS, Silva RR, Palmieri M, Polito WL, Calil VL, Cremona M, Ribeiroa SJL, Messaddeq Y, J. Mater. Chem. C, 3, 11581 (2015)
  15. Abas Z, Kim HS, Kim J, Kim JH, Front. Mater., 1, 1 (2014)
  16. Dugan JM, Gough JE, Eichhorn SJ, Nanomedicine., 8, 297 (2013)
  17. Shi Z, Zhang Y, Phillips GO, Yang G, Food Hydrocolloids, 35, 539 (2014)
  18. Abeer MM, Amin MCIM, Martin C, J. Pharm. Pharmacol., 66, 1047 (2014)
  19. Khan S, Ul-Islam M, Khattak WA, Ullah MW, Park JK, Carbohydr. Polym., 127, 86 (2015)
  20. Legnani C, Vilani C, Calil VL, Barud HS, Quirino WG, Achete CA, Ribeiro SJL, Cremona M, Thin Solid Films, 517(3), 1016 (2008)
  21. Rani MU, Appaiah KAA, J. Food Sci. Technol., 50, 755 (2013)
  22. Hungund BS, Gupta SG, J. Microbiol. Biotechnol., 2, 127 (2010)
  23. Fu L, Zhang J, Yang G, Carbohydr. Polym., 92, 1432 (2013)