화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.47, 86-93, March, 2017
Azo dye decolorization by ZVI under circum-neutral pH conditions and the characterization of ZVI corrosion products
E-mail:
This study examined the effects of initial solution pH (pHi), ZVI dosage, initial Trypan Blue (TB) concentration ([TB]0), and background electrolytes (NaCl and NaNO3) on the rate and extent of dye decolorization. TB azo dye ([TB]0 = 90 μM) was almost completely removed in 1320 min at pHi 4, while only 54% at pHi 10. The effects of Cl- and NO3- as a common major anion (10 mM) were contrasting on the efficiency of ZVI decolorization. The former accelerated the decolorization presumably due to impeding surface passivation of secondary Fe (oxyhydr)oxides by forming dissolved Fe-Cl complexes. On the contrary, the latter promoted the formation of secondary oxide layers resulting in the declining the ZVI reactivity. The XRD spectra of reacted ZVI particles suggested that lepidocrocite was initially formed as the ZVI corrosion products, which gradually transformed to magnetite. FT-IR spectroscopy revealed the decolorization processes as the destruction of N=N bond in TB dye structure, followed by the formation of free aromatic amine groups (-NH2) after 1320 min of reaction with ZVI. The experimental results demonstrated that the novel ZVI treatment system could be a potential and promising alternative technique to remove TB dye by reductive decolorization treatment processes.
  1. Geiger C, Kathleen CK, Environmental Applications of Nanoscale and Microscale Reactive Metal Particles, American Chemical Society, Washington, DC, 2009 pp. 320.
  2. Zollinger H, Color Chemistry: Synthesis, Properties, and Applications of Organic Dyes and Pigments, third revised edition, Wiley-VCH Weinheim, 2003 pp. 637.
  3. Forgacs E, Cserhati T, Oros G, Environ. Int., 30, 953 (2004)
  4. Gunes EH, Gunes Y, Talinli I, Desalination, 226(1-3), 348 (2008)
  5. Frijters CTMJ, Vos RH, Scheffer G, Mulder R, Water Res., 40, 1249 (2006)
  6. Carliell CM, Barclay SJ, Shaw C, Wheatley AD, Buckley CA, Environ. Technol., 19, 1133 (1998)
  7. Chung KT, Cerniglia CE, Mutat. Res. Rev. Genet. Toxicol., 277, 201 (1992)
  8. Przystas W, Zabłocka-Godlewska E, Grabinska-Sota E, Water Air Soil Pollut., 223, 1581 (2012)
  9. Dabrowski A, Adv. Colloid Interface Sci., 93, 135 (2001)
  10. Kimura K, Hane Y, Watanabe Y, Amy G, Ohkuma N, Water Res., 38, 3431 (2004)
  11. Hilal N, Al-Khatib L, Atkin BP, Kochkodan V, Potapchenko N, Desalination, 158(1-3), 65 (2003)
  12. Zhu J, Agric. Ecosyst. Environ., 78, 93 (2000)
  13. Pinheiro HM, Touraud E, Thomas O, Dyes Pigment., 61, 121 (2004)
  14. Franciscon E, Piubeli F, Fantinatti-Garboggini F, de Menezes CR, Silva IS, Cavaco-Paulo A, Grossman MJ, Durrant LR, Enzyme Microb. Technol., 46(5), 360 (2010)
  15. Zhang R, Li J, Liu C, Shen J, Sun X, Han W, Wang L, Colloids Surf. A: Physicochem. Eng. Asp., 425, 108 (2013)
  16. Huang YH, Zhang TC, Water Res., 40, 3075 (2006)
  17. Xu J, Hao ZW, Xie CS, Lv XS, Yang YP, Xu XH, Desalination, 284, 9 (2012)
  18. Zhang J, Zhang G, Wang M, Zheng K, Cai D, Wu Z, Nanoscale, 5, 9917 (2013)
  19. Cao J, Wei L, Huang Q, Wang L, Han S, Chemosphere, 38, 565 (1999)
  20. Pei CC, Am. Chem. Soc., 237 (2013)
  21. Nam S, Tratnyek PG, Water Res., 34, 1837 (2000)
  22. Yoon IH, Kim KW, Bang S, Kim MG, Appl. Catal. B: Environ., 104(1-2), 185 (2011)
  23. Agrawal A, Tratnyek PG, Environ. Sci. Technol., 30, 153 (1995)
  24. Matheson LJ, Tratnyek PG, Environ. Sci. Technol., 28, 2045 (1994)
  25. Sohn K, Kang SW, Ahn S, Woo M, Yang SK, Environ. Sci. Technol., 40, 5514 (2006)
  26. Bandara J, Mielczarski JA, Kiwi J, Langmuir, 15(22), 7670 (1999)
  27. Isik M, Sponza DT, J. Hazard. Mater., 114(1-3), 29 (2004)
  28. Rao ANS, Venkatarangaiah VT, J. Electrochem. Sci. Eng., 3, 67 (2013)
  29. Malel E, Shalev DE, J. Chem. Educ., 90, 490 (2012)
  30. Wust WF, Kober R, Schlicker O, Dahmke A, Environ. Sci. Technol., 33, 4304 (1999)
  31. Kanel SR, Manning B, Charlet L, Choi H, Environ. Sci. Technol., 39, 1291 (2005)
  32. Feitz AJ, Joo SH, Guan J, Sun Q, Sedlak DL, Waite TD, Colloids Surf. A: Physicochem. Eng. Asp., 265, 88 (2005)
  33. Katsoyiannis IA, Ruettimann T, Hug SJ, Environ. Sci. Technol., 42, 7424 (2008)
  34. Keenan CR, Sedlak DL, Environ. Sci. Technol., 42, 1262 (2008)
  35. Leupin OX, Hug SJ, Water Res., 39, 1729 (2005)
  36. Noradoun CE, Cheng IF, Environ. Sci. Technol., 39, 7158 (2005)
  37. Englehardt JD, Meeroff DE, Echegoyen L, Deng Y, Raymo FM, Schibata T, Environ. Sci. Technol., 41, 270 (2007)
  38. Millero FJ, Sotolongo S, Lzaguirre M, Geochim. Cosmochim. Acta, 51, 793 (1987)
  39. Wehrli B, in: Stumm W (Ed.), Aquatic Chemical Kinetics: Reaction Rates of Processes in Natural Waters, John Wiley & Sons, New York, 1990, pp. 311.
  40. Keane E, U.S. Environmental Protection Agency 1384, 2009.
  41. Hara S, Miura M, Uchiumi Y, Fujiwara T, Yamamoto M, Corrosion Sci., 47, 2419 (2005)
  42. Wallinder IO, Bertling S, Zhang X, Leygraf C, J. Environ. Monit., 6, 704 (2004)
  43. Deyab MA, El-Rehim SSA, Electrochim. Acta, 53(4), 1754 (2007)
  44. He F, Zhao D, Environ. Sci. Technol., 41, 6216 (2007)
  45. Nobial M, Devos O, Mattos OR, Tribollet B, J. Electroanal. Chem., 600(1), 87 (2007)
  46. Qiu SR, Lai HF, Roberson MJ, Hunt ML, Amrhein C, Giancarlo LC, Flynn GW, Yarmoff JA, Langmuir, 16(5), 2230 (2000)