화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.2, 227-234, March, 2017
점탄성 특성을 고려한 환상 형상 압출의 해석적 연구
Computational Study on the Extrusion of Annular Shaped Product Considering Viscoelastic Characteristics
E-mail:
초록
고분자 용융체는 점탄성 특성을 가지고 있다. 점탄성 재료의 복잡한 흐름 거동을 파악하기 위해서 모세관 다이를 이용하여 다이 코너에서 나타나는 회전유동과 압출물의 팽창에 대한 연구가 많이 진행되었다. 본 연구는 이러한 연구의 확장으로 환상 형상의 다이에서 유변학적인 거동과 다이팽창에 대한 연구를 진행하였다. 실험을 통하여 컴퓨터 시뮬레이션에 필요한 재료의 유변학적 물성을 측정하였으며, 이를 비선형 점탄성 모델과 generalized Newtonian 모델에 적용하여 해석을 수행하였다. 해석을 통하여 다이 내의 압력과 속도분포를 파악하였다. 다이 출구에서는 속도 프로파일을 관찰하였고, 환상 형상 압출물의 형상을 예측하였다. 두 유변학적 모델에서 다이 내의 압력 분포와 속도 분포는 유사하게 나타났지만 다이 출구면에서의 속도 프로파일은 다르게 나타났다. 또한 유변학적 모델에 따라 환상 형상 압출물의 외경과 내경의 형상이 확연히 다르게 나타났다. 비선형 점탄성 모델로 사용한 PTT(Phan-Thien Tanner) 모델에서 이완시간에 따른 환상 형상 압출물의 팽창현상을 자세히 분석하였으며, 유량에 따른 외경과 내경 그리고 두께의 팽창량도 정량적으로 파악하였다.
Polymer melts have viscoelastic characteristics. Many researches for the circulation flows at the corner of capillary die and die swell have been performed to investigate the complicated viscoelastic flow behaviors. This study is an extension of previous researches from the capillary die to an annular die. Flow behaviors and die swells in an annular die have been investigated in this study. Rheological properties required in computer simulation were measured through experiment. And then computer simulation of die extrusion has been performed using non-linear viscoelastic model and generalized Newtonian model. Pressure and velocity distributions inside of the annular die have been analyzed. Extruded profiles of annular shape have been predicted and analyzed. Inner and outer profiles of annular shaped extrudate were different according to the rheological models whereas pressure and velocity distributions inside of the annular die were similar. Detailed phenomena of die swell have been analyzed for various relaxation times in the PTT (Phan-Thien Tanner) model, which was used for the non-linear viscoelastic model. Swells of outer diameter, inner diameter, and thickness for diverse flow rate have been also analyzed quantitatively.
  1. White JL, Principles of Polymer Engineering Rheology, Wiley, NY (1990).
  2. Han CD, Rheology in Polymer Processing, Academic Press, NY (1976).
  3. Bird RB, Armstrong RC, Hassager O, Dynamics of Polymeric Liquids: Vol. 1, Wiley, NY (1987).
  4. Kim JH, Hong JH, Choi SH, Kim HJ, Lyu MY, Elast. Compos., 46, 54 (2011)
  5. Choi TG, Lee HJ, Lyu MY, Elast. Compos., 49, 272 (2014)
  6. Kim JH, Lyu MY, Polym. Eng. Sci., 54(10), 2441 (2014)
  7. Hulsen MA, Theor. Comp. Fluid Dyn., 5, 33 (1993)
  8. Park SJ, Lee SJ, J. Non-Newton. Fluid Mech., 87(2-3), 197 (1999)
  9. Kim JM, Chung C, Ahn KH, Lee SJ, Nihon Reoroji Gakkaishi, 33, 191 (2005)
  10. GUENETTE R, FORTIN M, J. Non-Newton. Fluid Mech., 60(1), 27 (1995)
  11. Baaijens FPT, J. Non-Newton. Fluid Mech., 75(2-3), 119 (1998)
  12. Matallah H, Townsend P, Webster MF, J. Non-Newton. Fluid Mech., 75(2-3), 139 (1998)
  13. Aboubacar M, Webster MF, J. Non-Newton. Fluid Mech., 98(2-3), 83 (2001)
  14. YURAN F, CROCHET MJ, J. Non-Newton. Fluid Mech., 57(2-3), 283 (1995)
  15. Ngamaramvaranggul V, Webster MF, Int. J. Numer. Methods Fluids, 36, 539 (2001)
  16. Huang JC, Leong KS, J. Appl. Polym. Sci., 84(6), 1269 (2002)
  17. Mullner HW, Eberhardsteiner J, Hofstetter K, Proc. Appl. Math. Mech., 6, 575 (2006)
  18. Ngamaramvaranggu V, Webster MF, Int. J. Numer. Methods Fluids, 38, 677 (2002)
  19. Kwon Y, Polym. Korea, 25(4), 536 (2001)
  20. Hatzikiriakos SG, Mitsoulis E, Rheol. Acta, 35(6), 545 (1996)
  21. Mitsoulis E, Hatzikiriakos SG, Christodoulou K, Vlassopoulos D, Rheol. Acta, 37(5), 438 (1998)
  22. Mitsoulis E, Hatzikiriakos SG, Rheol. Acta, 42(4), 309 (2003)
  23. Mitsoulis E, Kazatchkov IB, Hatzikiriakos SG, Rheol. Acta, 44(4), 418 (2005)
  24. Ansari M, Alabbas A, Hatzikiriakos SC, Mitsoulis E, Int. Polym. Process., 25(4), 287 (2010)
  25. Ansari M, Mitsoulis E, Hatzikiriakos SG, Adv. Polym. Technol., 38, 369 (2013)
  26. Choi SH, Lyu MY, Int. Polym. Process., 24(4), 326 (2009)
  27. Kim JH, Hong JS, Choi SH, Kim HJ, Lyu MY, Elast. Compos., 46, 54 (2011)
  28. Lyu MY, Park D, Kim H, Yoon J, Elast. Compos., 41, 223 (2006)
  29. Choi SH, Lyu MY, Transact. Mater. Proc., 16, 262 (2007)
  30. Agarwal PK, Bagley EB, Hill CT, Polym. Eng. Sci., 18, 282 (1978)
  31. Huneault MA, Lafleur PG, Carreau PJ, Plast. Eng., 18, 39 (1989)
  32. Sombatsompop N, Sergsiri S, Polym. Adv. Technol., 15, 472 (2004)
  33. Mullner HW, Eberhardsteiner J, Fidi W, Polym. Test, 26, 1041 (2007)
  34. Yang Y, Lee LJ, Polym. Eng. Sci., 27, 1088 (1987)
  35. Sombatsompop N, Dangtangee R, J. Appl. Polym. Sci., 86(7), 1762 (2002)
  36. Sombatsompop N, Dangtungee R, J. Appl. Polym. Sci., 82(10), 2525 (2001)
  37. Gifford WA, Polym. Eng. Sci., 38(7), 1167 (1998)
  38. Tokita N, Rubber Chem. Technol., 54, 439 (1981)
  39. Gast L, Ellingson W, Int. J. Numer. Methods Fluids, 29, 1 (1999)
  40. Montes S, White JL, J. Non-Newton. Fluid Mech., 49, 277 (1993)
  41. Park CH, Korean J. Gastroenterol., 43, 154 (2007)
  42. Lee MA, Lyu MY, Shin DJ, Kim TG, Trans. Mater. Process., 24, 89 (2015)
  43. Michaeli W, Extrusion Dies for Plastics and Rubber, Hanser, Munich, 1992.
  44. Lyu MY, White JL, Int. Polym. Process., 10(4), 305 (1995)
  45. Macosko CW, Rheology: Principles, Measurement, and Applications, Wiley, NY, 1994.
  46. Phan-Thien N, Tanner RI, J. Non-Newton. Fluid Mech., 2, 353 (1977)